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Abstract

At the heart of quantum physics lies the principle of superposition, and at the heart of
information theory lies the bit. Perhaps the most useful property of quantum systems
is that they can be loaded with information bits, so-called qubits, that are indefinitely
both 0 and 1 until a measurement is made. Another consequence is that several qubits
can become entangled, which is manifested by the non-classical correlations between such
quantum systems when measured in all possible bases. Within the rapidly progressing
fields of quantum information and quantum communication these quantum effects are
utilized to perform tasks such as quantum computing and quantum cryptography.

In this thesis we present experimental and theoretical work using single photon sources
to prepare “flying” photonic qubits. We describe work using mainly quasi-phase-matched
nonlinear crystals to generate beams of entangled photon pairs, that are either encoded
in polarization at near-visible wavelengths, or in time at optical fiber telecommunication
wavelengths (1550 nm). The optical fiber is the medium used for transporting the qubits
over a long distance, and it is therefore essential to couple the photons well into the fibers.
By focusing the beams optimally, we have investigated how this problem can meet the
requirement of creating photons of a narrow frequency bandwidth and a high photon flux.
Furthermore, we have generated truly single photons that are heralded by an electrical
signal. As a result of modifying the statistics of such sources we have been able to show the
effect of photon antibunching. In two separate works, we have implemented a quantum key
distribution system based on faint laser pulses at the telecom wavelength of 1550 nm, as
well as protocols based on entanglement for performing authentication of key distribution
in quantum cryptography.
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Preface

This thesis is the result of research work conducted in the group of Quantum Elec-
tronics and Quantum Optics at the Department of Microelectronics and Informa-
tion Technology (KTH) between the years 2000 and 2005. The thesis consists of
a short summary of the field in general, alternated with results and discussion of
my own work in collaboration with others, which have originally been published
or submitted for publication in research journals. These publications are listed on
page xiii and appended at the end of the thesis, and form the core of the scientific
results. Specific details omitted from the thesis are found in the reprinted publica-
tions. Details on the scientific contribution of the author is given on the cover page
preceding each of the reprints. An overview of each chapter is found at the end of
the introduction.
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Chapter 1

Introduction

In one respect, A. Einstein doubted quantum physics for the entire second part of
his life. He had predicted that if quantum theory was right there would be an effect
where two particles, in his case electrons, could show correlation in measurements
at an infinite distance apart, even though each particle individually would show
a random outcome in the same measurement. He called this implausible effect “a
spooky action at a distance”, and declared that clearly something is incomplete with
quantum mechanics in its description of reality [Einstein, Podolsky, Rosen, 1935].
He never made peace with the idea, and neither did he live past the time of the first
convincing experiments of the so-called EPR-effect, that indeed proved it just to
be a natural consequence of quantum theory. The Nobel laureate in physics 2005,
R. Glauber (who is among the inventors of quantum optics) recently participated in
a round table discussion, Noble minds, where he touched upon this issue. He could
safely declare that today we have an “EPR-industry”. He was aiming at the lively
fields of quantum information and quantum communication which has become the
first to appreciate the power of so-called entangled pairs of particles. The graph
in Figure 1.1 shows the evolution of sources of entangled photon pairs, which are
frequently used today as a resource of entanglement. The y-axis shows the number
of photon pairs that can be produced per second, and one can observe a tremendous
growth in development over the past ten years as technology has made more and
more efficient sources available. The first sources used emission from single atoms.
It turned out to take over 30 years after the development of the laser until it became
an key component in efficient entanglement generation. In a few years (∼2025 by
extrapolating the graph) we will probably create entangled photons with the same
ease and high photon flux as a semiconductor laser-diode produce light today.

In quantum communication, entanglement is used as a resource to perform
various tasks such as quantum teleportation, dense coding, and quantum cryptog-
raphy. The latter has become the first commercial application based on full theory
of quantum physics, and is currently hunting customers. The area is strongly mul-
tidisciplinary in the sense of merging ideas from both quantum physics, information
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Figure 1.1: Historical and possible future trends of production rates of entangled
photon pairs created in non-linear crystals. The exponential growth over time is
mainly due to better crystal materials, longer crystals, more efficient fiber-coupling,
or fiber-based generation. Data taken from Appendix A.

theory, cryptography, computer science, optics, atomic physics, etc., both experi-
mentally and theoretically. In particular, quantum optics has become a very fruitful
ground for direct tests and showcase of quantum theory, due its high pedagogical
value and fairly simple implementations.

This thesis concerns the use of single photons to encode and decode quantum
units of information called qubits. In Chapter 2 some fundamental concepts of quan-
tum theory and quantum optics are given as a background and put into context
with information theory and cryptography, together forming quantum information
and quantum communication. Chapter 3 summarizes our work of generating single
photon-pairs that are either entangled or used to generate single photons. The
latter problem is treated in Paper A, and the former in Paper D. We also sum-
marize Paper B which includes the latest results on a hybrid coded entanglement
communication system that we are developing. In Paper C we attack the problem
of how to efficiently collect the single photons into optical fibers, a problem which
has received great attention over the last few years as a further way of increasing
the quality of the sources, or perhaps due to the insight of how suitable fibers are
for almost all optical manipulation and transportation of photonic qubits. This
paper is also summarized in Chapter 3. To test the quality of entanglement and
characterize the output emission of single photon sources there are standard tools
developed which we have utilized in our work and which we provide a summary
of in Chapter 4. Chapter 5 is devoted to a short review of the possible uses of
entanglement and of the different implementations of quantum cryptography, as
well as a summary of Paper E and Paper F. Chapter 6 concludes the thesis.



Chapter 2

Fundamental concepts

We shall in this chapter review some techniques that have been developed from
quantum theory and optical communication to encode information at the single-
photon level using the concept of a photonic qubit. We also summarize some
fundamental results of quantum optics and beam propagation, and cover the ma-
nipulations of qubits in the language of quantum information. The role of superpo-
sitions, entanglement, and the principle of no-cloning in quantum communication
and quantum cryptography is discussed. Rather complete introductory references
would be Mandel and Wolf [1995]; Nielsen and Chuang [2000]; Tittel and Weihs
[2001]; Gisin et al. [2002].

2.1 The photon as an information carrier

Waves and particles are the only known forms of energy that can carry information.
This fact makes them two very fundamentally important entities. Even so, as we
know today, information always needs to be represented by a physical system, or
conversely: any physical system is information, which might be a more astonishing
claim. Either way, the statements are simply a sign of wisdom, inspired by the
thoughts of R. Landauer [1996]. Like him, many have now started to realize that
information is not merely an abstract concept that is disconnected from the laws
of physics. Rather, information is always embodied in some form of energy or
another: everything we perceive is information — which should not be mistaken
for that it carries any meaningful message. The above statements have become
like a mantra for quantum information scientist, and the insight which we shall
bring along when discussing light as an information carrier is that any encoding of
quantum information is strongly affected by its medium.

The electromagnetic field as a medium has its clear advantages1, it can eas-
ily reach very far distances, it travels at the fastest speed we are aware of, it has
huge information carrying capacities, and it is fairly easy to manipulate. In 1895,

1As a comparison, at the other extreme we have a message in a bottle.

3
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G. Marconi made the first attempt of taming the electromagnetic field as an infor-
mation carrier using radio frequencies (MHz−GHz), discovered earlier by H. Hertz.
Since then, we have managed to tame both sonar frequencies (kHz), optical fre-
quencies (PHz), and X-rays (EHz). Already from the beginning, waves proved to
be extremely successful in describing time-varying electrical fields in all possible
contexts. Today, what is becoming more important also for communication, is that
the field starts to behave particle-like for very low intensities and high frequencies.
This idea was proposed by Planck in 1900 and used by Einstein in 1905 to ex-
plain the photoelectric effect. It would prove to be the birth of quantum theory.
Earlier on, Maxwell’s classical theories had been sufficient to explain the behavior
of electromagnetic fields as waves, and already in 1865 he proposed that light is
an electromagnetic wave. In the classical description many photons work together
to form the electromagnetic field and acts therefore as a single wave. Information
can be modulated onto the wave, or signal carrier, using the amplitude, frequency,
polarization, or phase of the field; ideas which today defines the areas of radio-,
microwave-, and optical communication. Combining the ideas from quantum theory
[Peres, 1995] and optical communication [Agrawal, 1997], we shall in this chapter
review some techniques that have been developed to encode information in a single
photon.

Like all particles and waves, single photons obey the principle of superposition.
But unlike classical objects and waves, the quantum version is special and a little
bit more peculiar in the sense that it shows effects that are very different from
what one can experience in everyday life. The quantum superposition principle,
as it appears, is a consequence of the photon being both a wave and a particle. If
we arrange for our detection system not to provide any information on the extent
of the photon as a particle it will behave as a wave, and vice versa. Due to the
indivisible nature of the photons, a single photon can only choose to give a click in
a single detector at a time, and so therefore, in contrast to a classical wave showing
interference and giving different intensities in two detectors, a photon must instead
be attributed a probability to give a click in either detector. In this context, it
has shown successful to ascribe quantum theory as a theory of predictions — a
theory which is becoming more and more popularly looked at even as a theory of
information; as soon as we have gathered information of the system we must update
our description of it in terms of probabilities. In the above sense, superposition can
be seen as a manifestation of Heisenberg’s uncertainty principle, which in one form
states that detection of a photon providing fairly exact knowledge on its time of
arrival can only be done at the cost of not precisely knowing its frequency, or vice
versa; noting that frequency is a characteristic property of waves. Thus, one way
to look at the photon is to say that within its extent the photon is a wave, and
outside it is a particle, that is, a waveparticle — be it either just a click in a
detector or something real. From this semiclassical viewpoint, many effects of how
single photons behave in for example interferometers can be understood using the
particle picture to explain why only one detector will click, and the wave picture
to predict via superpositions which detector will click. The combined effect cannot
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be explained by the particle- or the wave picture alone. However, there is one
quantum effect that is even more subtle and not explainable by the semiclassical
picture, namely, the interference between two photons in a beamsplitter. We will
come back to this device soon.

The quantum superposition property of the photon is used in the implementa-
tion of the qubit. As such, a single photon can carry maximumly one classical bit
of information, pertaining to a yes (1) and no (0) outcome of a single measurement
made on the qubit using two orthogonal projections. Regarding the photon as a
qubit, it is probably the best and the worst implementation for a qubit at the same
time. It interacts fairly weakly with the environment, which is good for propaga-
tion, and it is easy to manipulate its direction of propagation, and its polarization,
etc. On the other hand, a photon is harder to make interact with other photons,
because it is simply the mediating particle of the field between electrical charges
composing atoms. If we would like photonic qubits to interact with other photonic
qubits, to implement logical gate operations for example, the only way is therefore
via atom-photon interaction — a non-linear coupling which is usually quite weak.

Despite the weak interactions in for example the optical fiber, light sent through
it will be attenuated, or rather, in the case of a single photon, absorbed. The
absorption-rate, or loss, has its minimum in optical fibers at the wavelength of
1550 nm. The loss is of course affected by the transmission distance, L, in the
fiber, and will depend as 10−αL/10, where α is 2 − 3 dB/km for the first telecom
window (800 nm), 0.35 dB/km for the second (1300 nm), and 0.20 dB/km for the
third (1550 nm) (all values for single-mode fibers). The standard fiber is good as
a photon carrier medium but far from perfect. There are mainly four effects that
cause trouble. Depolarization effects are present in the form of birefringence and
polarization mode dispersion; the former is due to different phase-velocities for two
orthogonal polarizations and the latter is due to different group velocities. Both
rotates the polarization randomly making it difficult to maintain information coded
in polarization. The geometric phase, or Berry phase, will also rotate the state
depending on the trajectory of the fiber. However, this is just a matter of a one-
time agreement between the sender and receiver to apply some suitable anti-rotation
within their reference frame if the fiber trajectory is stationary. Another problem
is chromatic dispersion which will cause decoherence effects if the information is
encoded in time, that is, phase.

A few long-distance quantum communication experiments at single photon level
have been demonstrated in free-space as well. In straight point-to-point communi-
cation additional restrictions on the location of the sender and receiver apply, and
consequently, a major interest lies in satellite-to-earth communication. Experimen-
tally such links are outside the scope of the thesis. However, as we shall see, the
ideas for authentication in quantum cryptography, Paper E, may be very useful
in this context.
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2.2 States, modes, and indistinguishability

In quantum physics, a state |ψ〉 is used to describe the physical state of the system,
and in mathematical terms it is defined as a vector in a Hilbert space. If we choose
a particular basis for our Hilbert space, the state can also be represented by a wave-
function that assigns different complex weights cn to each of the basis-vectors. A
pure state is one which can be written as a single vector |ψ〉 in one particular basis,
and a mixed state one which can only be expressed by a density matrix ρ as a sum of
outer products of at least two pure states, ρ =

∑

n pn|ψn〉〈ψn|. In quantum physics
the plus sign between two states, |ψ〉 = c1|ψ1〉 + c2|ψ2〉, is attributed a special
significance by denoting the superposition of states. What is effectively added is
quantum state amplitudes, cn, corresponding to quantum probabilities, c∗ncm, that
may be negative. It has the consequence that classical probabilities, pn = |cn|2, are
represented by the diagonal elements in a mixed density matrix.

What the Hilbert space actually does represent in physical terms are different
degrees of freedom of the system. Such degrees of freedom can be the spatial coordi-
nates (transverse spatial), temporal properties (longitudinal spatial), polarization,
spin, or any other physical entity which we would like to use to describe the system.

To make a connection to the previous section, we could ask for the boundary
where a wave acts as a particle, and a particle acts as a wave. The answer lies in
the uncertainty relations, which for the temporal degree of freedom become

∆ν∆t ≥ 0.44, (2.1)

for frequency and time with Gaussian forms. In analogy, for the one-dimensional
spatial degree of freedom,

∆kx∆x ≥ 1, (2.2)

where ∆kx is the uncertainty of the wavevector kx in the x-direction, and ∆x is
the uncertainty in the position of a particle along x. Both of these equations will
define the concept of temporal or spatial “modes” respectively. One can represent
Eqn. (2.2) graphically by a two-dimensional surface as in Figure 2.1. In each basis,
x and kx, the wave-function describes the form of a slice cut through the surface.
Together they define an area of uncertainty (volume in general). Now, a state is said
to be in a single-mode if its wave-function is described by a real-valued Gaussian
function in both dimensions, so that the uncertainty relation is obeyed in a strict
sense, ∆kx∆x = 1. In other words, the area (volume) in that case defines the
minimum resolution of the state of the system. Within the area the state is first-
order coherent, that is, within it we are forbidden to make any further distinctions
whatsoever between different values of the variables of positions, x, and propagation
directions, kx, of a particle, without affecting the other variable. Thus, the area
defines the range of values of x and kx which are fundamentally indistinguishable.
Furthermore, two different systems, or particles, can be in different such “modes”
that may or may not overlap. If two such systems, a and b, are components of a
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Figure 2.1: Areas of uncertainty defining the single-mode.

bigger system and the areas do not overlap they are distinguishable, and the bigger
system is said to be multimode, ∆kx∆x > 1. These concepts will be very important
later on for beam propagation, as we couple light into optical fibers. A fiber which
guides only the fundamental single-mode is appropriate as a quantum channel as it
will act as an isolated environment for the photon, in contrast to multimode fibers.

Turning to quantum optics, the concept of the photon as a particle enters from
the quantization of the electromagnetic field of light. The electromagnetic field can
be regarded as oscillating in a space restricted to the single-mode volume (also in
free-space), setting boundary conditions for the energy of the field. Hence, as an
effect, the energy becomes discretized, or quantized. The oscillation takes place
between the two quadrature components P and Q of the real electrical field

Ereal(t) = P cosωt+Q sinωt, (2.3)

with the two components obeying the general principle of uncertainty. However, due
to the quantization, the relation is much more conveniently expressed mathemati-
cally as a commutation rule using operators P̂ and Q̂ instead of the real fields. We
have [Q̂, P̂ ] = Q̂P̂ − P̂ Q̂ = 1, symbolizing how Q̂P̂ and P̂ Q̂ have different meanings
in quantum theory. In other words, the nonzero factor is a result of the interplay
between two non-commuting observables in two differently ordered sets of measure-
ments. In general ∆Q̂∆P̂ ≥ 1

2 |〈[Q̂, P̂ ]〉| for any two non-commuting observables.
Similarly [â, â†] = 1, where â ∼ E and â† ∼ E∗, loosely speaking. The quantization
of the total energy Ĥ appears mathematically in form of an eigenequation,

Ĥ|n〉 = ~ωn|n〉, (2.4)

such that the field operations â|n〉 = √n|n−1〉 and â†|n〉 =
√
n+ 1|n+1〉 alter the

number of photons n occupying the single-mode oscillator in state |n〉. The total
energy, ~ωn, of n photons can thus attain only discrete values. Just like E∗E = |E|2
represents the energy in a classical field, n̂ = â†â represents the photon number.
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Using the field operators, the energy becomes Ĥ = ~ω(n̂+1/2), where the constant
term represents the vacuum energy for n = 0. This lowest energy is a consequence
of the commutation relation introduced to represent the uncertainty principle in a
single-mode oscillator. Thus, the uncertainty principle can now also be understood
as a result of the field never coming to rest. The circle is closed. Finally, the
instantaneous electrical field is given by

Ê(+)(t) = âe−iωt = (Q̂+ iP̂ )e−iωt, (2.5)

which is used to describe the interactions in the crystals later on. There is also a
special state, called the coherent state2,

|α〉 = e−|α|
2/2

∞
∑

n=0

αn√
n!
|n〉, (2.6)

which has a minimum uncertainty in the photon number n̂ and the complex field â,
and is an eigenstate to the field, â|α〉 = α|α〉. It is the approximate state emitted
by a laser, and is therefore often used as a source of single photons (although with
limitations).

In a different language, each of the dynamical variables {x, k}, {ν, t}, and opera-
tors {P̂ , Q̂} define a set of Fourier transform pairs. For example, k is the transform
of x and vice versa, both representing the same information. The transform is sim-
ply an interconversion between two equally valid basis-sets; in this case describing
two continuous variables of the spatial degree of freedom. If we instead choose a
finite dimensional Hilbert-space, for example the polarization degree of freedom,
the basis sets will be {H/V, D/A, R/L}, denoting the different polarizations. They
are related by the discrete Fourier transform |ui〉 =

∑

j |vj〉〈vi|uj〉, which become

extremely simple: |D〉 = 1√
2
(|H〉 + |V〉), |L〉 = 1√

2
(|H〉 − i|V〉), etc. The bases are

said to be complementarity, or mutually unbiased, and is part of the same urprin-
cip as uncertainty. For example, such bases are used to guarantee the security in
quantum cryptography.

We will make some short notes on optical beam propagation, which can be
treated by decomposing the light beam into a sum of plane waves k. The normal-
ized coordinates of each plane wave in an Cartesian system become p = kx/k,
q = ky/k, and m = kz/k, where k is the length of the vector k, such that
k = k(p ex + q ey +m ez). Along the z-axis the following approximation is useful:

m =
√

1− (p2 + q2) ≈ 1 − (p2 + q2)/2, where p2 + q2 ≤ 1 represents a homoge-
neously propagating field, and p2 + q2 > 1 represents an inhomogeneous, damped
field, which we pay no attention to here. Hence, the angular spectrum amplitude
for a monochromatic Gaussian beam become

A(p, q) =
kw0√
2π
e(kw0)

2(p2+q2)/4, (2.7)

2Discovered by R. Glauber who received the Nobel prize last week (writing December 2005).
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Figure 2.2: Gaussian beam propagation and the modes of uncertainty.

which is normalized to represent a constant power in the beam independent of the
beam waist radius w0. The angular spectrum can also be used to write the general
state of the beam

|G〉 =
∫∫

dθdϕ A(θ, ϕ)e−iωt|ω〉|θ〉|ϕ〉, (2.8)

in spherical coordinates (p = sin θ cosϕ, q = sin θ sinϕ, m = cos θ). The electrical
field is found as the Fourier transform of the angular spectrum amplitude,

E(x, y, z) =

∞
∫∫

−∞

A(p, q)eik(px+qy+mz)dp dq. (2.9)

Figure Figure 2.2 shows the electrical field profile of a propagating Gaussian
beam. The form of the angular spectrum and the electrical field is a real Gaussian
function at the beam waist, related by their transforms and the single-mode con-
dition ∆k∆x = 1. At the far-field the state is multimode ∆k∆x > 1. However,
the state |G〉 is pure everywhere. I believe that the following two conditions are
generally valid for the relation between states and modes of uncertainty, pertaining
to the same degree of freedom:

1. It is a necessary but not sufficient condition for a single-mode to be a pure state:

single-mode =⇒ pure state

2. It is a necessary but not sufficient condition for a mixed state to be multimode:

mixed state =⇒ multimode
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|0〉 + |1〉

|1〉

|0〉 − i|1〉

|0〉

φ

z

x

y

θ

α|0〉 + β|1〉

|0〉 − |1〉

|0〉 + i|1〉

Figure 2.3: The qubit-sphere. Any two diagonally opposite states form an orthog-
onal basis to describe the qubit, and any two orthogonal lines through the origin
define two mutually unbiased bases. Pure states lie on the outer shell and mixed
states inside.

2.3 Qubit representations and operations

The qubit can carry at maximum one bit of classical information, but it is richer
in the sense that it can describe superposition between two orthogonal states |0〉
and |1〉3. To define the quantum unit of information the name qubit was coined by
Schumacher [1995]. The general pure state of a qubit system has the following
form,

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (2.10)

and can be visualized on the qubit-sphere, also called the Bloch-sphere, see Fig-
ure 2.3. The different axes represents the three mutually unbiased bases that exist
for a two-dimensional Hilbert-space. In quantum communication (and computa-
tion) it is of special interest to look at systems of several qubits. When forming a
system of two or more subsystems the qubits can also have correlations in the super-
positions; they are said to be entangled. The general pure state for two entangled

3By the typewriter font we denote a logical value of the state of a system that can have many
different physical representations.
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systems A and B is

|Φ〉 = α|0A〉|0B〉+ β|0A〉|1B〉+ γ|1A〉|0B〉+ δ|1A〉|1B〉, (2.11)

which has the important property not to be separable into a product of states of
the two subsystems, |ϑA〉 ⊗ |ϑB〉, for all states where αδ 6= βγ. We will come back
to this special type of correlation soon. In the following text we will summarize the
different realizations of qubits used in quantum communication, and for which the
qubit-sphere is an equally valid illustration.

Polarization qubit

Perhaps the most illustrative and also most popular representation of a qubit is
the polarization of the electrical field. The polarization can be H/V (horizon-
tal/vertical), D/A (diagonal/ anti-diagonal), or R/L (right/left circular), form-
ing three mutually unbiased bases. Each basis vector H and V etc. are orthogo-
nal. R and L are found on the top and bottom of the qubit sphere, historically
called the Poincaré-sphere in polarization optics. A simple qubit has the form
|ψ〉 = α|R〉+β|L〉 = α|0〉+β|1〉. Polarization qubits are very simple to encode and
decode using half-wave plates, quarter-wave plates, and polarizing beamsplitters,
but are problematic to transport over fibers as we mentioned earlier. Due to the vast
popularity of polarization coding in mainly free-space we will leave out any specific
references. Polarization coding is used in Paper A, Paper B, and Paper D.

Phase qubit

The phase is the most commonly used representation for the qubit in faint-pulse
quantum cryptography. The phase is naturally chosen to encode the information
to overcome the problems using polarization in optical fibers. The phase-qubit is
prepared and analyzed using interferometers and phase-modulators. The photon
coherence length needs to be longer than the path-length mismatch between the
different arms of the interferometers. This is the type of coding used for single qubits
in the “plug and play” quantum cryptography scheme, and hence in Paper F.
For the corresponding coding of entangled qubits please refer to the paragraph on
continuous-time qubits.

Dual-rail qubit

As the name suggest the qubit is encoded in two spatially different modes, such
that a single photon exists in a superposition of being in either mode, see Fig-
ure 2.4. Sometimes it is also called a bosonic qubit. The qubit is prepared by a
semi-transparent mirror, or beamsplitter. The photon in each mode is attributed
the value 0 or 1, according to the notation |n0n1〉 where n denotes the number of
photons in each arm (mode). Thus, the two modes define a single qubit system,
which has the form |ψ〉 = α|10〉+ βeiφ|01〉 = α|0〉+ βeiφ|1〉. The qubit is decoded
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|ψ〉 = α|0〉 + βeiφ|1〉

T

φ

|1〉

|0〉

Figure 2.4: The dual-rail qubit. Variable transmission, T = α2 = 1− β2.

T

|ψ〉 = α|0〉 + βeiφ|1〉

|1〉

|0〉

φ

Figure 2.5: Discrete-time qubit. Variable transmission, T = α2 = 1− β2.

by a similar setup, which is reversed. The encoding is only practical for small-scale,
short-distance implementations since both rails need the same environmentally in-
duced noise on each of the modes, and has thus found its application in linear
optical quantum computing [Knill et al., 2001; O’Brien et al., 2003].

Discrete-time qubit

If we instead let each spatial mode go into different but adjacent temporal modes
(time-bins) roughly the same environment will act on both modes if the time-delay is
not too long, see Figure 2.5. The scheme is used to send qubits robustly over optical
fibers. The time-separation between the modes is larger than the coherence length
of the photon itself. Denoting the different temporal modes with an superscript a
simple qubit has the form |ψ〉 = α|01〉t1 + βeiφ|01〉t2 = α|0〉+ βeiφ|1〉. See further
Section 3.4 where the decoder for this implementation is discussed. The principle
is to interfere each of the modes again by reversing the encoding process. Thus, the
phase relation will define the complementary basis. The implementation display
a lot of similarities with Franson-type interferometry for two entangled states, see
next paragraph. For references see Brendel et al. [1999]; Tittel et al. [2000] and
Paper B.
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|Φ〉 = 1
√

2
(|00〉 + ei(φA+φB)|11〉)

source

Figure 2.6: Continuous-time entangled qubits.

Continuous-time qubit

This type of coding is usually associated with entanglement between two systems, so
called energy-time entanglement, and was first proposed by Franson [1989]. It con-
sists of two unbalanced Mach-Zehnder interferometers similar to Figure 2.5, one for
each system, see Figure 2.6. The coding uses the phase information to encode the
information similar to phase-qubits. When detecting two energy-time correlated
photons in precise coincidence, one cannot determine which way either of them
took in the interferometers. Therefore, the two paths, long-long and short-short,
will interfere (the long-short and short-long cases will not produce coincidences).
Depending on the phase, the photons will come out in either port of the last beam-
splitters, in correlation.

However, each of the two interferometers can also be seen separately as a encoder
and a decoder for a single qubit. If looked at as being part of the detection system
the unbalanced interferometer introduces an uncertainty in the time of arrival of
the photons, or, in other words, effectively extends the photons’ coherence length4

to be as long as the path-difference between the arms. The state on each side
will be in a coherent superposition between the lower |0〉 and upper arm |1〉, and
realize a qubit. Depending on the phase, the photon will then choose way in
the last interferometer and give a click in either detector. The entanglement in
emission time and frequency of each photon will provide correlations between the
two systems depending on the relative phase φA− φB. The encoding and decoding
is implemented using phase-modulators. The scheme has been demonstrated in
many implementations using a single basis [Kwiat et al., 1993; Tittel et al., 1998,
1999], and with two non-orthogonal bases for quantum cryptography [Ribordy et al.,
2001].

4The interferometer works here in the same way as the jitter of the detectors by extending
the coherence length of the photons, see Section 3.5. For the entangled state it is necessary for
the two-photon (i.e. the pump beam) coherence length to be longer than the path difference.
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Figure 2.7: Spatial-mode qubit. Laguerre-Gaussian (LG) and Hermite-Gaussian
(HG) modes. The vortex in the mode denoted HLG rotates around the optical axis
as it propagates.

Spatial qubits

Spatial qubits can be obtained through the higher orders of transverse Hermite-
Gaussian (HGn,m) and Laguerre-Gaussian (LGp,m) modes, which both contain an
infinite set of orthogonal modes5. The mathematical structure of these modes,
indexed by {n,m} and {p,m}, respectively, can be found in for example Siegman
[1986]. The two sets differ in symmetry; the LG-modes have radial symmetry, while
the HG-modes can always be decomposed into two orthogonal axes. How these sets
of bases work to encode qubits should be clear from Figure 2.7. A superposition of
two modes from either set will form another mode from either set like illustrated.
For example, |LG01〉 = 1√

2
(|0〉+ i|1〉), where |0〉 = |HG01〉 and |1〉 = |HG10〉, makes

a qubit from a superposition of two HG-modes. The result is a mode of a single
photon that exhibits orbital angular momentum, a so called donut mode. The
fundamental modes HG00 and LG00 are identical to the zero:th order transverse
electromagnetic mode TEM00, that are all described by a real valued Gaussian
function, Eqn. (2.7), and resembles closely the mode supported by the single-mode
fibers. These modes also makes a suitable basis to represent the emission from
spontaneous parametric down-conversion, hence our interest. The transformation
between the modes can be realized by phase-holograms, working as an encoder via

5Not be confused with the spatial and temporal uncertainty modes discussed earlier, these
modes are rather basis-vectors that constitute the different laser modes.
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the mode-selection of a fiber. Example of such work is [Mair et al., 2001; Leach
et al., 2002; Langford et al., 2004]. The bases make a suitable way to encode
higher-dimensional qudits of any dimension D.

Frequency qubit

The method of frequency-multiplexing has made a strong impact on classical com-
munication, and in the case of a qubit it would imply the encoding of one frequency
|ω1〉 as |0〉 and another frequency |ω2〉 as |1〉, where ω1 and ω2 are the sidebands of
a center frequency ω0. As we shall see later, photon-pairs generated by spontaneous
parametric downconversion will have quantum correlations in frequency (entangle-
ment), which makes it a suitable basis for qubits, or even qudits. The encoders
and decoders would utilize phase modulators and wavelength-multiplexers for their
implementation. Some work on this has been done [Sun et al., 1995; Mérolla et al.,
1999].

Transformations

In analogy with tasks in classical computation and communication, where bits of
information are processed via gates and circuits, a similar toolbox for operations
on qubits in the language of quantum information has been developed. Such op-
erations, or transformations, will correspond to rotations and/or reflections of the
qubits in the qubit-sphere. The operations can either be single-qubit operations or
multiqubit operations. The transformations we need to apply depend of course in
each case on the qubit’s physical implementation. We will here review the most
important operations, ignoring any possible overall phase-factors.

The three Pauli matrices have a special significance when operated on single
qubits like |ψ〉 = α|0〉+β|1〉. They either invert the qubit, X|ψ〉 = β|0〉+α|1〉 (NOT-
gate), flips the phase of the qubit, Z|ψ〉 = α|0〉−β|1〉, or both, Y |ψ〉 = β|0〉−α|1〉,
with the basis vectors represented as |0〉 = [ 10 ] and |1〉 = [ 01 ]. We list the operations
here in matrix form together with the identity operator,

I =

[

1 0
0 1

]

; X =

[

0 1
1 0

]

; Y =

[

0 −i
i 0

]

; Z =

[

1 0
0 −1

]

. (2.12)

These four matrices together form a complete basis set for generating any 2× 2
Hermitian matrix. The so called Hadamard transform H is a very important oper-
ation that takes a single vector |0〉 in some basis into a superposition 1√

2
(|0〉 − |1〉)

in the same basis. Another useful operation is the phase-gate S. They have the
following matrix representations,

H =
1√
2

[

1 1
1 −1

]

; S =

[

1 0
0 i

]

. (2.13)
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Even though not explicitly noted, these transforms are frequently used in our exper-
imental work when analyzing qubits. For example, half-wave-plates and quarter-
wave-plates rotates the qubit around the three axes, RX(b), RY (c), RZ(d), for
different angle settings φ = f(b, c, d) of the plates, corresponding to the three Pauli
matrices. Any arbitrary transformation U can always be written as a combination
of rotations of the qubit on the qubit-sphere, U = eiaRZ(b)RY (c)RZ(d), accord-
ingly. It should also be noted that it is impossible to find a general transformation
U that operates unambiguously on an unknown qubit. That is to say, we can-
not create for example a universal bit-flip operation X that bit-flips every possible
state on the qubit-sphere with complex coefficients. Such a transform would be
non-unitary [Pati, 2002]. Thus, all operation on the qubit-sphere which we would
like to use for computation has to be defined to work only for some partially known
qubits that lie on a circle, for example the polar circle with only real coefficients.
It is therefore important to decide upon a so called computational basis for the
physical implementation. This is the basis which we would like to protect from
decoherence in the communication system as we shall see later.

The most important two-qubit operation is the controlled-NOT function, referred
to as CNOT. Conditioned on one of the qubit systems (the control qubit), the
operation bit-flips the other (the target qubit). This gate is very important in
order to explain the creation of entanglement in operational terms, as well as the
analysis of entanglement, as it takes product states into non-separable states and
vice versa. In matrix form it is represented by

UCNOT =

[

I 0

0 X

]

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (2.14)

We will soon return to this transformation in Section 2.4.

The beamsplitter

We will now pay some attention to a very useful and remarkable device: the
beamsplitter. In all its simpleness, it has been an essential part of many new
discoveries within quantum optics, especially in the investigations of higher-order
correlation functions describing single-photon and two-photon interference effects
[Hanbury Brown and Twiss, 1956a; Hong et al., 1987]. In general, the beamsplitter
is reciprocal and has four input ports and four output ports. As the name suggests
it can be used to split the light of two input ports, a and b, into two output ports,
a′ and b′, as is illustrated in Figure 2.8. For our purpose it suffice to simplify the
analysis to 50/50% splitting. The device is used to interfere either one photon with
itself or two or several photons with each other, and it is therefore a key component
in preparing and analyzing discrete-time qubits. To understand the function of the
beamsplitter we need to use the number state notation, which we already encoun-
tered: |ψab〉 = |nanb〉 =

√

1/na!(â
†)na

√

1/nb!(b̂
†)nb |00〉, where na, nb denotes the



2.3. QUBIT REPRESENTATIONS AND OPERATIONS 17

b′

a′a

b

Figure 2.8: The beamsplitter.

number of photons in either port (mode) a or b. Since the number states belong
to an infinite dimensional Hilbert space, we can hardly express the beamsplitter
transformation as a matrix in general. Instead we can use Heisenberg’s picture to
describe how the creation operators evolve through the beamsplitter according to

â† =
1√
2
(i · â′† + b̂′†),

b̂† =
1√
2
(â′† + i · b̂′†). (2.15)

The imaginary number is due to the reflection, which makes a 90◦ retardation
in phase, while transmission makes no change in phase. Table 2.1 summarizes
the different types of interferences which can occur. Note especially the signature
of two-photon interference (5) where two input photons never exits at different
ports. This is a result of adding probability amplitudes, and is a distinguishing
mark for how photons behave according to quantum theory, having no classical
analog. The effect has been shown both with photon pairs [Hong et al., 1987]
and two independent photons [Santori et al., 2002]. Furthermore, it is essential
that the spatial and temporal modes of both ports overlap to see any interference
effects, and that the polarizations are identical. This is the number-one concern
experimentally, and therefore it is beneficial to use fiber optical based beamsplitter
which are pre-aligned, solving at least the first of these three problems.

If we restrict ourself to a finite dimensional subset of the possible states of
photon-numbers as given in the table, we can use the following basis set: {|10〉, |01〉,
|20〉, |02〉, |11〉} corresponding to vectors {(00001)T, . . . , (10000)T}, with dimension
D = 5. In this case, the action of the beamsplitter transform B on a general input
state will give the correct output state |ψa′b′〉 = B|ψab〉 for

B =
1√
2













0 i i 0 0

i −1/
√
2 1/

√
2 0 0

i 1/
√
2 −1/

√
2 0 0

0 0 0 i 1
0 0 0 1 i













. (2.16)

It is interesting to take note of the fact that the beamsplitter can for example
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|ψab〉 B←→ |ψa′b′〉

1 1√
2
(|01〉+ i|10〉) i|01〉

2 1√
2
(|01〉 − i|10〉) |10〉

3 |01〉 1√
2
(i|01〉+ |10〉)

4 |10〉 1√
2
(|01〉+ i|10〉)

5 |11〉 i√
2
(|02〉+ |20〉)

6 1√
2
(|02〉 − |20〉) 1√

2
(|20〉 − |02〉)

7 |20〉 − 1
2 |20〉+ i 1√

2
|11〉+ 1

2 |02〉
8 |02〉 1

2 |20〉+ i 1√
2
|11〉 − 1

2 |02〉
9 1√

2
(|02〉+ |20〉) i|11〉

Table 2.1: The different types of interference effects in a beamsplitter.

act as a Hadamard transform. For the dual-rail qubit the lower-right part of the
transform Bh = [ i 11 i ] will have this function. Together with additional phase-shifts
we get SBhS = iH.

Note also from the table, that if a product state is sent into the beamsplitter a
non-separable state will in general exit (e.g. 3, 4, and 5). The two output modes
will be entangled. As we shall see in Section 3.4 the beamsplitter can also be used
to post-selectively create polarization entanglement. In the following section I will
present ideas on how entanglement can be seen as the offspring of superpositions
and classical correlations solely.

2.4 Entanglement demystified?

Ever since its discovery, entanglement has come to play a central role in many
widely differing contexts dealing with quantum theory. It is not surprising since
entanglement is a natural consequence for any multiparticle system described by
quantum-like superpositions. Entanglement can in principle arise for any quantum
system in which at least two subsystems can be identified and isolated. The two
modes of the beamsplitter form exactly two such subsystems that can become en-
tangled. In fact, the majority of states in our world are probably entangled, if we
look at our overall environment as a system. A popular belief is that it is more of
an exception for two subsystems to be separable than to be non-separable. In the
following text we shall discuss how entanglement arise from the process of sponta-
neous parametric downconversion in a nonlinear crystal as a consequence of Nature
not allowing clones to exist for quantum objects, and neither so superluminal com-
munication [Peres, 2002]. We will not go into details about the process itself, but
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Figure 2.9: Illustration of creation of product states.

leave that to Chapter 3. The experiments we refer to are Paper B and Paper D,
based on the idea to use two crystals to create polarization entanglement [Hardy,
1992; Kwiat et al., 1999].

Consider first the following gedanken experiment, similar to the proposal by
Herbert [1982]. The upper part of Figure 2.9 shows a single unpolarized photon
(pump) give birth to two other photons (signal and idler) inside a box, with the
pump photon itself becoming destroyed in the process. Ignore the content of the
box. The two photons are created at some random time-instant with the same
horizontal polarization |HH〉, both exactly in phase with the pump. Consider now
the lower part, and the possibility that two vertical polarized photons |VV〉 are
created, also in phase with the pump. The risk of two pairs to be created from
either box at exactly the same time-instant is negligible. Now, as illustrated by
Figure 2.10, we place both boxes just after each other (which are infinitely thin), so
that we in principle cannot determine by any means from which box the photons
come except by their polarization. Imagine so that we make a measurement behind
the source to determine the polarization of the signal and idler photons. If we set the
signal analyzer to measure |Ds〉, we understand from the principle of superposition
that we will also measure |Di〉 at the idler with a deterministic outcome since the
photons are all in phase (“|D〉 = (|H〉+ |V〉)/

√
2”). The anti-diagonal polarization

|A〉 will never occur, but if we instead measure either |Hs〉 or |Vs〉 it is obvious
that also |Hi〉 or |Vi〉, respectively, will be measured with a deterministic outcome,
and never |Di〉. This is because we can now determine (distinguish) from the result
of the signal measurement if the photon was horizontal or vertical so that the
superposition at the idler becomes destroyed. If this gedanken experiment worked
one should observe that superluminal communication is possible: Depending on
the type of measurement made on the signal side, either H/V-basis or D, it would
immediately (with zero delay) affect the idler side to give either |Di〉 and |Ai〉
randomly, or |Di〉 deterministically, respectively, if always measured in the D/A-
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Figure 2.10: Illustration of how superposition between product states creates en-
tanglement.

basis. In the statistical limit of many photon pairs sent, the signal side could send
a message to the idler side by agreeing on encoding N random outcomes in a row
as 0, and N deterministic outcomes as 1, with a high probability of success. In
conclusion, what we would need to have created is the state (|HH〉 + |VV〉)/

√
2,

that when rotated to D/A-basis looks like |DD〉 and not (|DD〉 + |AA〉)/
√
2 for

superluminal communication to be possible.

No-cloning

So, why is it not possible? We can see the pump as a polarized input state to a
copying machine U that from the vacuum state |ψ0〉 produce two polarized outputs,
signal and idler: U |Vp〉|ψ0〉 = |Vs〉|Vi〉 and U |Hp〉|ψ0〉 = |Hs〉|Hi〉. For a perfect copy
machine we would also expect U |Dp〉|ψ0〉 = |Ds〉|Di〉, hence providing superluminal
communication indeed. This is not how the best quantum copy-machine work, and
instead from linearity in quantum theory we get U |Dp〉|ψ0〉 = U(|Hp〉+ |Vp〉)|ψ0〉 =
|Hs〉|Hi〉+ |Vs〉|Vi〉 6= |Ds〉|Di〉 which is (only) an entangled state. This proves that
the process of spontaneous parametric downconversion (and any other process for
that matter) is forbidden to act as a cloning machine. It is the fact that the process
is spontaneous that prohibits it from being a cloning machine; instead, it seems
that the entangled state is the closest we get to having two clones. In fact, we
have just showed that we could perform superluminal communication if we had
two identical clones, and therefore, we draw the conclusion that two clones cannot
even exist, nor be created. Note how we distinguish two clones from two identically
prepared quantum systems. No-cloning has been proven rigorously by Wootters
and Zurek [1982]. For a comprehensive review, see Scarani et al. [2005]. No-cloning
is a direct consequence of the uncertainty principle: If an unknown state could be
cloned, then many copies of a state could be made so that each dynamical variable
could be measured with an arbitrary precision and violate the uncertainty principle.
Nevertheless, to compensate Nature has provided us with entanglement, which still
have very useful properties that are exploited intensely today.

What prevents the downconversion process from being a cloning machine is that
the the signal and idler are created randomly in phase with respect to each other,
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Figure 2.11: General Bell-state creation.

but, importantly, with their sum of phases still correlated with the phase of the
pump. With this fact in mind, as each of the two possible processes |HH〉 and |VV〉
are both perfectly correlated individually, it is simply a natural consequence that
also any of their superpositions exhibits correlations, but randomly what kind. As
soon as a subsystem (signal) is detected in some particular state, we will know for
sure from the phase correlation via the pump photon the state of the other subsys-
tem (idler). As we can readily observe, classically correlated states in superposition
is simply what we refer to as entanglement.

Quantum computation and communication

In classical circuit theory the controlled-not gate, or XOR, creates correlations be-
tween the two input bits. A target input bit value of 0 will come out with the same
value as the control bit, 0 or 1. What is unique for the corresponding quantum gate
(CNOT) is that it also accepts superposition states, allowing to perform calculations
on qubits. In quantum computation this effect can be used to create entanglement.
Figure 2.11 shows a circuit to transform a product state into a non-separable entan-
gled state, using a CNOT-gate and an additional Hadamard transform. The CNOT

gate is said to realize a non-separable operation. It is an equivalent circuit for the
process of spontaneous parametric downconversion, where the control qubit is the
pump photon and the target qubit is the vacuum state. A CNOT does not realize
a cloning device, but simply an entangling operation. The CNOT transform is non-
separable operation in the sense that UCNOT 6= UA ⊗ UB, due to its non-linearity,
which is also an important property of spontaneous parametric downconversion.
In essence, entanglement is a resource of non-linearity, and vice versa. However,
as we shall discuss in Chapter 3 the non-linearity is in general a very weak effect
in most physical systems, especially for photonic qubits through the Kerr-effect or
spontaneous parametric downconversion. It was therefore a breakthrough when
Knill et al. [2001] showed that it suffice with linear optics (single-photon states,
beamsplitters, detector feedback etc.) to provide the same effect, and enable opti-
cal quantum computation via an optical CNOT [O’Brien et al., 2003]. Linear optics
quantum computing has turned into a lively area of research in strong need for
single-photon sources and entanglement. As we will return to later, entanglement
via linear optics can only be achieved probabilistically. We should also stress the
importance of being able to efficiently implement the NOT-gate and the CNOT-gate,
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as they form a universal set of gates for quantum computation, meaning that the
two alone suffice to create any other type of logic.

There are four important maximally entangled states in the two-qubit space,
called the Bell-states, which are created from a product state using the circuit in
Figure 2.11,

|Φ+〉 = 1√
2
(|00〉+ |11〉), (2.17a)

|Φ−〉 = 1√
2
(|00〉 − |11〉), (2.17b)

|Ψ+〉 = 1√
2
(|01〉+ |10〉), (2.17c)

|Ψ−〉 = 1√
2
(|01〉 − |10〉). (2.17d)

What we have seen be due to the principle of no-cloning is that an entangled state
is an entangled state also upon a rotation of both qubits into some other basis.
All the four Bell-states have this property. The last state is special in that it is
invariant upon a two-qubit rotation, that is, its form remain the same in any basis
because of its anti-symmetry. Experimentally, either of these states can be created
simply by rotating one of the qubits accordingly. However, the following results is
important:

Fundamental law of quantum communication. Using only local operations
and classical communication, the total amount of entanglement between two sepa-
rate qubits can never be increased.

This is a general rule that distinguish entanglement as a resource of quantum
correlations that can only be locally refueled. Another related results important
to quantum communication is the fact that if we have a set of states that are only
partially entangled, we can gain a subset of more entangled states from the first by
the process of purification. This purification ideally needs the CNOT gate but can
be implemented to work probabilistically via linear optics [Pan et al., 2001, 2003],
or via filtering [Kwiat et al., 2001].

2.5 Information and cryptography

In cryptography it is essential with correlations. If two parties have a correlated
string of bits at their hand that nobody else knows the values of, they can use this
string to communicate any message absolutely secretly between each other. This
is the so-called Vernam cipher, or one-time-pad [Vernam, 1926]. Let’s say my bank
has to provide me with my new VISA-code in binary form V = {1001001100111}(!)
over plain text email, and that it happens that both I and the bank already share a
number n of random bit-strings Kn which we exchanged a few years ago when I was
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at the bank to authenticate myself and open my account. Hopefully the bank has
kept the 3:rd bit-string K3 = {1000100010001} secret to be used now. By taking
the XOR product C = V ⊕ K3 between all elements in the strings the bank can
provide an encrypted string C = {0001101110110} which looks as random as the
random bit-string but is neither similar to K3 nor to V . The information that C
contains is distributed between K3 and V ; it is indeed tempting to think of K3 and
C as “classically entangled”! The bits in C are so meaningless to anyone that it
could even be published in the newspaper, but only deciphered by someone knowing
K3 by evaluating V = C⊕K3. It is the only proven fully secret cipher system that
exist, conditioned that the so-called key Kn is used only once [Shannon, 1949].

It is classically a hard problem to distribute such keys in a secure way. The
asymmetrical cryptosystems (mainly RSA) were developed to solve these issues
using separate keys for encryption and decryption, and on Internet today such
systems are generally used to provide session keys for symmetrical cryptosystems
as the digital encryption standard (DES) and advanced encryption standard (AES),
which uses the same principle as the one-time-pad, but in a complex way and with
much shorter keys [Stinson, 1995; Schneier, 1996]. All these cryptosystems rely
on the mathematical (and unproven) assumption that factoring large numbers is
hard. Indeed, the industry has to continuously keep up with the code-breakers
and increase the used bit-lengths even with today’s computer power. Perhaps even
worse, Peter Shor’s results [Shor, 1994] that quantum computers can solve factoring
problems exponentially fast, have cast shadows over the whole field of cryptology,
fearing that the quantum computer will eventually be implemented.

In order to appreciate quantum cryptography we should make the observation
that the art of cryptography can be reduced to a problem of key distribution if
the key can be generated fast enough and remain completely secret in the process.
Actually, the better term for quantum cryptography is quantum key distribution
(QKD). In Chapter 5 we will discuss different schemes of QKD that use either
single qubits in the BB84 protocol [Bennett and Brassard, 1984] or entangled qubits
[Ekert, 1991] to distribute raw-keys between two parties, Alice and Bob, protected
from the malicious eavesdropper Eve.

The history of quantum cryptography goes back to 1970 when Stephen Wiesner
prepared a manuscript on Conjugate coding [Wiesner, 1983]. His abstract provides
an excellent description:

The uncertainty principle imposes restrictions on the capacity of certain
types of communication channels. This paper will show that in compen-
sation for this ”quantum noise”, quantum mechanics allows us novel
forms of coding without analogue in communication channels adequately
described by classical physics.

Another way of putting the well-known principle to encode bits into two non-
orthogonal, or mutually unbiased bases, is to say that the information a qubit can
carry is set both at the preparation stage by Alice, and at the analyzer stage by
Bob. Thus, the security lies in the fact that the data is not fully recorded into the
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qubit until the final measurement. If Eve tries to make an measurement she will
inevitably alter the correlations in the outcomes of Alice and Bob. For a beautiful
review on quantum key distribution see Gisin et al. [2002].

Now, the business of QKD is not as simple as to simply use quantum channels
to encode qubits and decode qubits. In fact, the bits to be transferred using QKD
may not be guaranteed to be kept secret at all. The only guarantee, and which
is a distinguishing mark for quantum theory, via the principle of no-cloning and
complementarity, is that any eavesdropping attempt by Eve necessarily introduce
errors in the key that Alice and Bob can discover, or rather, correct and compensate
for via the two separate processes of reconciliation and privacy amplification. It is
not only eavesdropping that creates errors, also natural sources cause errors, and
therefore reconciliation over a classical channel is needed to correct the errors in
the key [Brassard and Salvail, 1994]. However, neither this step can be performed
without the risk of leaking some additional information to Eve. To ensure that the
final key becomes fully known only to Alice and Bob, Bennett et al. [1995] devised
a scheme to amplify the privacy of information. This theory relies heavily on the
quantification of information that Claude Shannon formulated in his famous The
mathematical theory of communication [Shannon, 1948]. There he defines entropy
H from a mathematical viewpoint to quantify the information content in a string
of bits X = {0, 1}n that each occur with a probability p0 and p1 = 1− p0 (see also
[Cover and Thomas, 1991]):

H(X) = −p0 log2(p0)− p1 log2(p1). (2.18)

The information that Bob’s string Y provide about Alice’s string X is defined by
the mutual information (p0 = p1 = 1/2 for a random key)

I(X;Y ) = H(X)−H(X|Y ) = 1 + e log2(e) + (1− e) log2(1− e), (2.19)

where e is the introduced quantum bit error rate (QBER) of the channel. Given
that a certain amount of information of the key has leaked to the eavesdropper,
Alice and Bob can agree on randomizing the key they share using a special type of
hash-function, which is assumed to be known to Eve. If Alice and Bob share more
information I(X;Y ) about the key than Eve does I(X;Z), this process will produce
a smaller key about which Eve has an arbitrarily small amount of information. We
have performed privacy amplification. The difficult part is to estimate how much
information the eavesdropper has gained before this step; various eavesdropping
analysis have been done by a number of people considering individual attacks on
each of the qubits (using the optimal cloning machine), and coherent (collective)
attacks. For the error correction part one can assume to use a method that works
on the Shannon limit, giving away at most as much information as there are errors
to correct.

To provide an estimate for the maximum QBER that can be tolerated, there is
a beautiful result combining two theorems by Csiszár and Körner [1978] and Hall
[1995], that also constitute a security proof of QKD. The first theorem states that a
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key can only be established if Alice and Bob’s mutual information I(X;Y ) is larger
than Bob and Eve’s mutual information I(X;Z) < I(X;Y ). The second theorem
is an alternative formulation of the uncertainty principle, I(X;Z) + I(X;Y ) ≤ 1,
which says that Bob’s information is limited by the disturbance that Eve introduces
by eavesdropping on a single qubit. Combining the two with Eqn. (2.19), we get
the maximumly tolerated QBER, emax = 11%. This result is valid for both non-
entanglement based and entanglement based QKD. More realistic assumptions on
eavesdropping attacks provide instead a limit of 15%. As a motivation for using
higher-dimensional states, it can be noted that the tolerated error-rate increase
for higher dimensions, using the maximally unbiased bases for each dimension to
encode the qudits [Cerf et al., 2002].

An important conclusion for security is that the QBER may be arbitrary large;
regardless if errors are due to the eavesdropper or noise, the combined effect is
simply a compression of the key. As long as the QBER is below some predetermined
level, Alice and Bob are still able to end up with a non-vanishing number of bits
that are secure up to a predetermined level. Therefore, it is essential to keep in
mind that the performances of different implementations of QKD, like single qubits
from faint-pulses, heralded sources, or entangled qubits in terms of empty pulses,
multiphoton events, and low visibility of correlation, does not affect the security of
the system, only the final bit-rate.





Chapter 3

Preparation of qubits

To prepare a qubit we need a quantized and coherent system consisting of two
levels. Such a system can be realized using the energy levels of an atom, the spin
of particles, or any other degree of freedom as we gave examples of in the previous
chapter. When it comes to choice of realization of a single qubit for the application
of quantum communication we must observe that different qubits are required to
be physically separable from each other. Each qubit need to be coded in a physi-
cally separate systems1 in order to carry any meaningful information that can be
read in and out from the system and distributed between a sender and a receiver.
Electromagnetic fields at optical frequencies provide a perfect ground for realizing
such a freely propagating and quantized system through the concept of a single
photon, using any of the photon’s internal or external degrees of freedom to en-
code the qubits, as we have seen. As we shall briefly discuss here, a single photon
can be prepared in several ways. In general, what is required by the photon in
terms of performance in various quantum information tasks, is that the photon is
prepared in a well-defined mode both spatially and temporally. By a well-defined
spatial mode we mean that the photon is in a global sense not emitted from some
source in an arbitrary direction, and from some arbitrary position, but rather into
a single mode defined by the maximum precision allowed by quantum physics via
the uncertainty relations. The remaining local uncertainty of the single-mode shall
not be seen as an obstacle, but an asset. Such a spatial indistinguishability is of
a fundamental kind that allows qubits to exist and for operations (interactions)
between different systems (photons) to occur via interference which is only possi-
ble for systems occupying the same mode. Spatially well-defined modes are also
important for efficient launching of photons into single-mode optical fibers which
are utilized in long distance quantum communication. Moreover, the system also
needs to be in a well-defined temporal mode, meaning that it can be determined
whether a qubit is encoded into one or more single system at a time, or that two
systems can be arranged to meet at specific time-instants limited only by the tem-

1In a quantum computer it is not equally important for the systems to be physically separable.
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poral uncertainty of the system, which in terms of the single photon is limited by
the coherence length.

Perhaps the simplest way to create a single photon is by the attenuation of a
coherent state, which is approximately what is emitted from a laser. If we atten-
uate laser-light strongly enough, we will at some point reach the stage were the
probability for more than a single photon to occupy a time-interval is arbitrary
low. To motivate our worry for creating multiple photons we turn to an example
discussed in Chapter 5, where it is noted that it is essential for security in quantum
cryptography that a qubit is not encoded onto more than a single system, as an
eavesdropper could otherwise get her hand on a copy. On the other hand, we would
not like to attenuate the laser-light too strongly, as this would decrease the rate of
the qubits and limit the communication speed. Considering these issues, a trade-off
must be made. Suppose the average number of photons is ¯̄m per time interval. We
know that the photon number of a coherent state is Poisson distributed, and thus
the probability of detecting n single-photons per time interval will be

Pn =
e−¯̄m ¯̄mn

n!
, (3.1)

which for ¯̄m = 0.1 gives Pn≥2 = 0.005, Pn=1 = 0.09, and Pn=0 = 0.9 as an example.
We can immediately see the consequences of using an attenuated continuous-wave
laser as a source of single photons. It provides no information about when a photon
is emitted. But even if we pulse the laser to provide synchronization signals the
source will have a very high probability of sending empty pulses if we want to
keep the two-photon events low. Nevertheless, there are some advantages of such a
source. As we have no intermediate steps between the laser and the source output
other than attenuation, the single-photons will inherit the spatial and temporal
mode of the laser which can be chosen to be single-mode. Clearly, the source is
very simple to set up and use. In Paper F we use this kind of source to prepare
qubits.

Two promising competitors among sources of single-photons worth to mention
are quantum dots or dye molecules. The advantages of quantum dots (and dye
molecules) are that they provide very accurate timing information and have a very
low probability of two or more photons being emitted. The single photon event is
triggered by an external laser pulse, which sorts these type of sources into a class
of single photons on-demand. The disadvantage is that the probability for a single
photon to be emitted is also low, and that even fewer photons are sent into, or can
be collected into, well-defined spatial modes.

In this thesis we will concentrate on a third type of source, namely photons that
are emitted from the process of spontaneous parametric downconversion (SPDC),
also called spontaneous parametric fluorescence which we have already discussed
some in the previous chapter. In SPDC, photons come in pairs, and therefore we
have a perfect way of creating a single photon accompanied by a synchronization
pulse. By simply detecting one of the photons in a pair we can get an electrical
signal that heralds the presence of the other. Sources of this type have come to be
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called heralded single photon sources. One such is presented in Paper A. The pairs
of photons can also be made entangled in any chosen degree of freedom, for example
in polarization or in discrete-time. Such work has been presented in Paper D and
Paper B, and is also reviewed in this chapter.

In Paper C we have investigated the mode-structure of SPDC, both spatially
and temporally, with the aim to be able to efficiently collect the emission into
optical single-mode fibers. We have looked into how the source can be optimized
with respect to the focusing of the beams and the bandwidths of the filters, but
also how to compensate for the mostly unavoidable effect of decoherence in either
the source itself, or in the quantum channel, that is, the optical fiber.

Some suitable references for the following sections are Yariv [1989]; Siegman
[1993a]; Mandel and Wolf [1995].

3.1 The emission from spontaneous parametric

downconversion

The atomic dipoles in a dielectric medium will generally respond linearly to an
incoming electromagnetic field by creating a dielectric polarization field. In some
mediums this response is also weakly nonlinear, which was found already in the
60’s to be very useful for optical frequency conversion. Before then, it had already
been discovered and used in the microwave region. Usually the optical medium is
a crystal, hence its name, nonlinear crystal.

The nonlinearity of the dielectric polarization makes it possible for an incoming
single optical field of a certain frequency to be decomposed into several optical fields
at other frequencies. The inverse process is also possible, where several incoming
fields interact to generate a single output optical field at the sum- or difference
frequencies. In this section will will concentrate on the former type of frequency
conversion to create pairs of photons. The latter type can be used to detect infrared
single photons at a visible frequency [Waldebäck, 2005].

Via the strength of the so-called susceptibility χ, which is a tensor, all types of
conversions can be described by the nonlinear dielectric polarization

P = ε0χ
(1)E + ε0χ

(2)E2 + · · · , (3.2)

created by the incoming field, E, which, for two input fields, is given by

E = E1 sinω1t+ E2 sinω2t. (3.3)

Expansion of P using Eqn. (3.3) in Eqn. (3.2) gives,

P = ε0χ
(1)(E1 sinω1t+ E2 sinω2t)

+
1

2
ε0χ

(2)[E2
1(1− cos 2ω1t) + E2

2(1− cos 2ω2t)

+ 2E1E2(cos(ω1 − ω2)t− cos(ω1 + ω2)t)]. (3.4)
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Figure 3.1: Frequency conversion in a nonlinear crystal.

As we can observe from equation Eqn. (3.4) there are harmonics, difference-, and
sum-frequencies in the nonlinear term χ(2): 2ω1, 2ω2, ω1 − ω2, or ω1 + ω2, which
correspond to the frequencies of the output fields ω3 and ω4, see Figure 3.1.
As seen, there are several possible combinations that produce different frequen-
cies. Second harmonic generation (SHG) of a field at 2ωp from a single input
field at ωp is a particularly simple case where ω1 = ω2 = ωp gives PSHG =
2ε0χ

(2)E2
p cos 2ωpt, neglecting the linear and constant terms. Another case is called

sum-frequency generation (SFG) for which ω1 = ωp and ω2 = ωs gives PSFG =
1
2ε0χ

(2)[E2
p cos 2ωpt+E

2
s cos 2ωst+2EpEs(cos(ωp−ωs)t− cos(ωp+ωs)t)], where we

have ωp + ωs = ω3. Spontaneous parametric downconversion, which we will focus
on here, can be described by setting ω1 = ωp and ω2 = ωvac, using the vacuum (in
very loose terms since vacuum does not really have a frequency). We get PSPDC =
1
2ε0χ

(2)[E2
p cos 2ωpt+E2

vac cos 2ωvact+2EpEvac(cos(ωp−ωvac)t− cos(ωp+ωvac)t)].
Any of the last two terms give the output ωp = ωs+ωi, where the two output fields
for historical reasons are called signal, ωs = ±ωvac, and idler, ωi, and the input field
is called pump, ωp. If we do not include the vacuum field in Eqn. (3.3) for SPDC
we readily observe that the dielectric polarization fail to produce other frequencies,
and so, even without knowledge of quantum theory we get a hint of that a fourth
fluctuating field is actually needed to describe the process. The vacuum also ex-
plains why the process is spontaneous. The process is called parametric generation
(PG) if the crystal is placed inside a cavity such that the signal is feedback. Another
related process commonly used is parametric amplification (PA), which avoids any
problems associated with vacuum by feeding ω2 using ωs, such that ω3 = ω1 − ω2.
All the latter type of processes are a kind of difference frequency generation (DFG).
When ωs is a weak seeding field we attain a gain in the medium and the process is
no longer spontaneous, but stimulated.

It is natural to ask under what conditions each of these processes occur. The
answer is that all processes will occur as long as they obey the energy conservation
ω1 + ω2 = ω3 + ω4. But, a problem that generally arise in dispersive mediums, is
that the photon fields created will drift apart as they propagate through the crystal.
For SPDC (ωp → ωs+ωi) this means that the signal and idler fields created at one
place in the crystal will interfere destructively with fields created at another place,
so that no conversion takes place. We thus need the fields to phase-match, which
can be arranged if they have the same refractive index such that the wavevectors
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add up, kp = ks + ki. In a birefringent crystal the refractive index varies with the
frequency and the direction of polarization. Thus it can happen for some specific
propagation directions that each of the three fields travel at a speed (phase velocity)
that makes the phases match up along the whole length of the crystal. This is called
birefringent phase-matching. The direction changes with the frequency of the fields,
which is why the emission reminds of a rainbow. The inverse process, ωs+ωi → ωp,
is now also phase-matched but will not become significant until the signal and idler
fields have grown strong enough, which will happen only after a very long distance
in the crystal is reached. The needed distance is shorter for strong pump powers.
These effects are all illustrated in Figure 3.2, showing the photon flux as function
of distance.

The conversion efficiency in the forward direction

We shall shortly show how the graph in Figure 3.2 was generated using the coupled
mode equations that governs the nonlinear interaction. Let us begin by assuming
that there exist a total field energy function that relates to the dielectric polarization
as

P = ∇E U(E), (3.5)

where P is the same as in Eqn. (3.4). The nonlinear interaction Hamiltonian
becomes

ĤP (t) =

∫

V

U(E) d3r =

∫

V

χ(2)Ê(+)
p Ê(−)

s Ê
(−)
i d3r +H.c., (3.6)

where the three interacting electrical fields propagating along the z-axis are given
in a quantized form using the annihilation and creation operators,

Ê(+)
p = âp(t)e

i(kpz−ωpt), (3.7a)

Ê(−)
s = â†s(t)e

−i(ksz−ωst), (3.7b)

Ê
(−)
i = â†i (t)e

−i(kiz−ωit). (3.7c)

By neglecting the annihilation terms for the signal and idler, as well as the creation
term for the pump, we implicitly make an assumption of the validity of the slowly
varying envelope approximation (SVEA), already at this stage. Without to affect
the final results we shall also in the following derivation ignore the fact that the
fields are annihilated and created with a random phase. The Hamiltonian becomes

ĤP (t) = χ(2)
∞
∫

−∞

δ(z − z′)e−i∆kzdz âpâ†s â†i e−i(»»
»
»»:

0

ωp−ωs−ωi)t +H.c., (3.8)
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Figure 3.2: The average and normalized photon number of the emission from spon-
taneous parametric downconversion versus the distance of propagation in the non-
linear crystal. To the right can be seen the effect of the inverse process where the
signal and idler (solid line) converts back into the pump (dashed line). The effi-
ciency with which downconversion takes place for realistic crystal lengths (∼ mm)
is very small, about 10−10. The inset shows the growth of photon number for per-
fect phase-matching, ∆k = 0 (dashed line), quasi-phase-matching (solid line) and
no phase-matching at all, ∆k À 0 (dashed-dotted line).

where we have assumed perfect frequency matching, ωp = ωs + ωi. The total
Hamiltonian consists of the energy in all of the fields plus the energy in the dielectric
polarization,

Ĥ(t) =
∑

m

~ωm(â†mâm +
1

2
) + ĤP (t) + H.c. (3.9)

Heisenberg’s equation of motion will describe how the field operators evolve,

dÂ

dt
= − i

~
[Â, Ĥ], (3.10)

where Â = âse
−iωst, Â = âie

−iωit, and Â = â†pe
iωp , each one put into Eqn. (3.10)

leads to the coupled mode equations:

dâs
dt

= −ig
2
â†i âp, (3.11a)

dâi
dt

= −ig
2
â†s âp, (3.11b)

dâp
dt

= −ig
∗

2
âsâi, (3.11c)
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where g = χ(2)e−i∆kz
′

, and ∆k = kp−ks−ki. Let further t = z′/c, such that z′ can
be used for the horizontal axis in the graph. We have used the commutation relation
[âm, ân] = [â†m, â

†
n] = 0, and [âm, â

†
n] = δm,n. The first two equations of Eqn. (3.11)

represents the down-conversion process, and the last equation represents the inverse
conversion process, allowing for a depletion of the pump. The flux of photon pairs
will be given by the average of the photon number operator n̂m = â†mâm, as

n̄m = 〈0, 0, np|n̂m|0, 0, np〉. (3.12)

The average photon number is plotted in Figure 3.2 as a function of distance
in the crystal for a perfect phase-matching condition, ∆k = 0. The vertical axis
is normalized to the initial photon number of the pump, thereby also representing
the efficiency by which one pump-photon is converted into one signal and one idler
photon. We also observe from Eqn. (3.12) that the photon-flux grows with the
pump-power. In the absolute forward direction of propagation (∆k = 0) Figure 3.2
suggests that the photon-flux P is proportional to L2. The situation gets more
complicated for the total flux as we need to then integrate over all ∆k ≥ 0. In
contrast to the textbook knowledge presented thus far, much less is understood for
the behavior of the photon-flux for emission coupled into optical fibers. This is part
of our original work, which we will return to in Section 3.6.

Types of phase-matching

In the foregoing discussion we have ignored the polarizations of the fields. However,
the nonlinearity χ(2) is a tensor that describes the strength in different polarization
directions. The nonlinearity of a uniaxial crystals is rotationally invariant around
the optic axis, which is defined by the two polarization components called ordinary,
o, and extraordinary, e, polarization. The ordinary component is in a plane per-
pendicular to the optic axis, and the extraordinary component is in a plane parallel
to the optic axis. As described by the tensor, different combinations of polarization
directions of the pump and the emission lead to different strengths in nonlinearity.
And because the refractive indices are polarization and frequency dependent, it will
also change the phase-matching conditions, giving different kinds of rainbow pat-
terns in the emission. Two such combinations that both gives high non-linearity are
classified as type-I and type-II phase-matching processes. The first type of process
can be described as ep → os+oi, where the pump is extraordinary and both the sig-
nal and idler are ordinary. The second process can be described as ep → es + oi, in
which the signal and idler have different polarizations. Figure 3.3 shows these two
types of processes, where each circle represents a different wavelength of the emis-
sion within a relatively small bandwidth. Some wavelengths are output as cones
and others as spots, usually in a non-colinear fashion, which means that the propa-
gation directions of the beams deviate from the direction of the pump beam. Still,
it is very advantageous in many cases that all three beams propagate colinearly. In
type-I phase-matching this is achieved for the wavelengths of signal and idler that
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Figure 3.3: Types of phase-matching in a single crystal configuration. The emission
is described by the x and y components of the polar angle θ, see Figure 3.5.

are emitted in the absolute forward direction. The two beams can have different
wavelengths and become spot-like. In type-II phase-matching spot-like beams can
only be achieved non-colinearly because of the different polarizations of the beams
[Vellekoop, 2002]; thus, colinear emission is instead found in the intersection of two
cones. In general, a colinear geometry allows easier alignment and spot-like beams
allows efficient coupling into single-mode fibers, which makes both desirable. Be-
fore ending this discussion we should note that the particular wavelengths which
are emitted in a particular geometry change with the incident angle of the pump
beam with respect to the optic axis of the crystal, and also by the temperature of
the crystal.

As an example, Figure 3.4 shows an experimentally obtained profile of the emis-
sion in type-II phase-matching in a β-BaB2O4 crystal (BBO). The different images
are taken by an infrared CCD camera in an experiment with 2 × 1550 nm photons,
described in Section 3.4. Each image correspond to different angles of incidence,
using the same frequency filter. Notice the spot-like emission in the rightmost
image. Some other types of uniaxial crystals used in birefringent phase-matching
include potassium dihydrogen phosphate, KH2PO4 (KDP) and potassium niobate,
KNbO3.

Quasi-phase-matching

The work in Paper A through Paper D use instead the technique of quasi-phase-
matching (QPM) to achieve colinear emission. The principle behind QPM is most
easily understood by taking a few steps back and observe what makes a process not
phase-matched; namely, the fact that the signal, idler and pump drift out-off phase
after some distance in the crystal due to unmatched refractive indices and therefore
interfere destructively. If we reverse the nonlinearity, that is, invert the dielectric
dipoles in the crystal after some distance in the crystal, the signal and idler can be
made to drift in-phase again. This process has to be repeated periodically in order
for the photon-flux to grow continuously. The behavior of such a growing photon
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Figure 3.4: The electrical field distribution of the emission in type-II spontaneous
parametric downconversion. The images were obtained with an InGaAs-CCD cam-
era placed a few centimeters behind the nonlinear crystal in the experimental setup
showed in Figure 3.19. The frequency filter bandwidth was 10 nm FWHM (full-
width half maximum).

flux is found in the inset of Figure 3.2. The poling is achieved by applying voltage
pulses across the crystal in a pattern that is determined by a photoresist placed on
top of an unpoled crystal. Via the electro-optic effect, the poling is monitored by
observing changes to the polarization of an external laser beam passing through the
sample [Karlsson et al., 1999]. For periodically poled materials, the spatial variation
of the non-linear index, χ(2), is in the order of a few µm in length, and has relatively
sharp boundaries for a squared grating pattern. This periodic structure will enter
mathematically as a quasi k-vector in the non-linear index, K = 2π/Λ ez, where Λ
is the grating period. For future use we will express χ(2) expanded by its Fourier-
series components

χ(2) = χ2 f(r) = χ2

∞
∑

m=0

fme
−imK·r, (3.13)

and then do a sinusoidal approximation using the first term only,

χ(2) = χ2 f1e
−iK·r. (3.14)

The condition for quasi-phase-matching becomes kp = ks + ki + K. The great
advantage with QPM is that we can design specifically what wavelengths should
phase-match colinearly by changing the period of the poling Λ. The disadvantage
is that the photon-flux does not grow as fast as in perfect phase-matching, however,
this is generally not a problem since QPM can be made to access other elements of
the non-linearity tensor, that are much stronger. The crystal used in the work of
this thesis is made from potassium titanyl phosphate which has the chemical for-
mula KTiOPO4, abbreviated KTP (PPKTP when being periodically poled). The
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KTP material, which is transparent in the region 350 µm to 3 µm, is a typical
example of a biaxial crystal in which there are three crystal axes needing to be
specified, X, Y , and Z, see Figure 3.5. We will refer to these axes for the beam
polarizations. The process that is phase-matched in our work is Zp → Zi+Zs. An-
other crystal material popularly used in poled structure is lithium niobate, LiNbO3,
in short PPLN. Quasi-phase-matched materials have a shorter history than bire-
fringent phase-matched materials because of the stronger technological challenges
in manufacturing, however, the knowhow has rapidly advanced over the last years.
PPLN has been on the market for some time now, and PPKTP has just become a
commercial product. For the use in quantum communication it is still relatively few
research groups, apart from us, that have investigated their potential for photon-
pair generation, especially KTP [Kuklewicz et al., 2004]. The KTP crystals we are
using were made in-house at KTH by the group of F. Laurell [Fragemann, 2005].

It is interesting to take note of the problem of photorefractive damage which
may occur at high powers or very strong focusing of the pump beam. It can be
explained by the photorefractive effect, which is an effect where the strong pump
intensity knocks out electrons from the valence band of the atoms in the bright
areas in the crystal where the pump-beam propagates. The electrons become free
to move around and will create a net-drift toward the dark regions in the crystal.
The electrons build up a field with the holes that are left behind, which changes
the dielectric polarization and, in turn, the refractive index. The crystal will thus
not phase-match correctly and no output is seen. KTP has been shown to have
relatively high resistance to the effect of photorefractive damage, and accordingly,
we have not observed this effect for our pump-powers. The effect decreases with
temperature, which makes another reason for heating the crystal apart from the
adjustment of exact phase-matching.

Angular and frequency spectrum

Up to here, we have discussed several things: what types of processes that occur
in birefringent and quasi-phase-matching, the growth of photon-flux with crystal
length, and the general emission characteristics for each type of process. We will
now analyze the characteristics of the emission a little more carefully, following
Paper C. The main problem considered in this paper is how well the emission
of quasi-phase-matched SPDC can be coupled into single-mode optical fibers. The
problem is important in quantum communication, where one wants as many of
the photon pairs as possible collected by the fibers. The obstacle against simply
increasing the pump power to compensate for low collection efficiency, is that low
collection efficiency itself limits the joint probability of getting both photon pairs
into the fibers, which makes the source less efficient in heralding the presence of
a single photon, or in creating entanglement. The solution to this problem is
to couple identical modes of the signal and the idler into the fibers, leading to
a problem of optimization. The obvious parameter to optimize with respect to
maximum collection efficiency, is the focusing condition of the pump mode and the



3.1. THE EMISSION FROM SPDC 37

pump X

Z

x

r

z

Y

y

θ
ϕ

Figure 3.5: The coordinate system used in the analysis of the emission of signal and
idler photons from a periodically poled crystal. The crystal’s axes X, Y , and Z are
used as a reference for the polarization of the incoming and outgoing optical fields.

fiber-matched modes. This was realized already before Boyd and Kleinman [1968],
who thoroughly investigated the effects of focusing in parametric generation. In
terms of SPDC as used for quantum information applications, the problem has been
addressed by several other groups [Monken et al., 1998; Pittman et al., 1996; Aichele
et al., 2002; Kurtsiefer et al., 2001; Bovino et al., 2003; Dragan, 2004; Castelletto
et al., 2004]. To simplify the analysis, it is a standard method to apply a short
crystal approximation, which means that the crystal is considered sufficiently short
for the pump beam to be a plane wave for a particular focusing, leaving only the
transverse form of the field in the calculations. Recently, however, it has been
a growing interest for using long crystals as they are expected to generate more
photons (see further Section 3.6). Hence, several groups have tried to determine
the behavior of the emission using the same model as for short crystals, thereby
needing to justify the validity of the approximation in ambiguous ways. Instead,
we have employed a full analysis similar to Boyd and Kleinman, and as expected,
our results show a similar geometrical behavior as theirs, in contrast to the other
work. We will soon return to this problem in Section 3.2.

To that end, we need a way of describing the structure of the emission, preferably
in terms of the angular and frequency spectrum. In order to determine the evolu-
tion of the state, commonly referred to as the two-photon amplitude, or bi-photon
amplitude, we will use Schrödinger’s picture instead of Heisenberg’s, together with
the interaction Hamiltonian. The procedure will lead to a final density matrix
describing the state of the signal, the idler, or both. Throughout the derivations
all three interacting electrical fields are decomposed into plane waves, which can
naturally represent the focusing of a Gaussian beam. We also take into account
the temporal information via the frequency dependencies of the k-vectors and the
filter amplitudes A(ω). To describe the angular part of the spectrum, we will use
the internal polar angle θ and the azimuthal angle ϕ, for each the signal and idler,
using the spherical coordinate system shown in Figure 3.5. The following derivation
simply sketches the procedure. For further details please refer to Paper C.



38 CHAPTER 3. PREPARATION OF QUBITS

The evolution of the number state vector is given by

|ψ〉 = exp



−i1
~

t0+T
∫

t0

dt ĤP (t)



 |ψ00〉

≈



11 +
1

i~

t0+T
∫

t0

dt ĤP (t)



 |ψ00〉, (3.15)

where |ψ00〉 is the state at time t0, T is the time of interaction, and ĤP (t) is the
Hamiltonian given by Eqn. (3.6). The three interacting electrical fields including
spatial and temporal information can be written

E(+)
p =

∑

sp

Ap(sp)e
i(kpsp·r−ωpt+φp), (3.16a)

Ê(−)
s =

∫

dφs

∫

dωsA(ωs)
∑

ss

e−i(ksss·r−ωst+φs)â†s(ωs, ss), (3.16b)

Ê
(−)
i =

∫

dφi

∫

dωiA(ωi)
∑

si

e−i(kisi·r−ωit+φi)â†i (ωi, si). (3.16c)

From Eqn. (3.15) the number state becomes

|ψ〉 = |ψ00〉+G2â
†
s â
†
i |ψ00〉 = |ψ00〉+G2|ψ11〉, (3.17)

where G2 is the unnormalized amplitude for the two-photon number state obtained
by inserting Eqn. (3.14) into Eqn. (3.6) and then Eqn. (3.6) into Eqn. (3.15),

G2 = 〈ψ11|ψ〉 =
1

i~

T
∫

0

dt

∫

V

d3r χ2 f1e
−iK·rE(+)

p E(−)
s E

(−)
i . (3.18)

Using Eqn. (3.16) the number state amplitude Eqn. (3.18) can be simplified as

G2 =

∫∫

dωsdωi
∑

ss

∑

si

S(ωs, ωi, ss, si). (3.19)

Our goal now is to arrive at an expression for the amplitude S as it also enters in
the state of frequency and angular spectrum of the form

|ψω,s〉 =
∫∫

dωsdωi
∑

ss

∑

si

S(ωs, ωi, ss, si)|ωs〉|ωi〉|ss〉|si〉. (3.20)

The so called two-photon amplitude S can be simplified as

S(ωs, ωi, θs, θi,∆ϕ) = χ2 f1A(ωs)A(ωi)Ap(θ
′
p, ϕ

′
p)

× L sinc

[

L

2
∆k′z

]

4π2

i~
δ(ωs + ωi − ωp), (3.21)
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where

∆k′z = ks cos θs + ki cos θi − kZp
√

1− (P 2 +Q2) +K, (3.22)

θ′p = arcsin
√

P 2 +Q2 = arccos
√

1− (P 2 +Q2), (3.23)

and

P 2 +Q2 =
k2s sin

2 θs + k2i sin
2 θi + 2kski sin θs sin θi cos(∆ϕ)

(kZp )
2

. (3.24)

In the last equation we have introduced ∆ϕ = ϕs − ϕi, manifesting rotationally
symmetric output emission. In closing, we note from Eqn. (3.20) and Eqn. (3.21)
that the two output photons, signal and idler, are entangled in both frequency and
in direction of propagation.

Emission modes

We are now ready to study the modes of the emission using the two-photon ampli-
tude that was previously derived. As an aside, we saw in Chapter 2 that Hermite-
Gaussian and Laguerre-Gaussian modes both represent a convenient, and complete,
basis set to encode qubits, or qudits. Some superpositions of two or more modes
taken from any of the two sets will be modes that also belong to one of the sets.
In principle, any such pure mode can be chosen to be coupled into a single-mode
fiber, for example using phase-holograms, and thus realize a qudit of any dimension.
None of the work described in this thesis have utilized such qubits yet. Instead,
as a first step our primary interest has been to find out how much of the emission
can be made to radiate in the fundamental Gaussian single mode, which is the
mode most closely supported by single-mode fibers. It is probably fair to say that
the refractive indices along the X and Y axis are approximately the same so that
the emission is rotationally symmetric around the axis of propagation. Rotational
symmetry is a property of Laguerre-Gaussian modes; therefore, such modes easily
come to mind as a suitable basis to describe the output emission. However, for our
purpose it will turn out to be even simpler to use another set of modes, namely the
eigenmodes, which are found by a diagonalization of the state density matrix. In
the next subsection, we will optimize the emission is such a way that the collective
amount of overlap between each of the eigenmodes with the fundamental Gaussian
mode is as large as possible, and in Chapter 4 we will return to these emission
modes in an effort to experimentally characterize the output using the M 2 factor.
All work is described in detail in Paper C.

We discretize the problem to cast it in a form suitable for numeric computation,
by choosing Nθ discrete plane-wave modes as a computational basis of the polar
angle. The two-photon state can be formulated as

|ψ∆ϕ,ε
si 〉 =

Nθ
∑

m,n=1

S(ε, θ
(m)
s , θ

(n)
i ,∆ϕ)|θ(m)

s 〉 ⊗ |θ(n)i 〉, (3.25)
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where the state implicitly depends on ∆ϕ, and ε, given as two parameters. The
two-photon density matrix can be readily formed as

ρ∆ϕ,εsi = |ψ∆ϕ,ε
si 〉〈ψ∆ϕ,ε

si |. (3.26)

We shall remove all other degrees of freedom except the idler polar angle, and in
the following we therefore take a partial trace over the signal in the polar angle
degree of freedom to get the reduced density matrix for the idler,

ρ∆ϕ,εi = Trs(ρ
∆ϕ,ε
si ) =

Nθ
∑

n

〈θ(n)s |ρ∆ϕ,εsi |θ(n)s 〉. (3.27)

The dependence on ∆ϕ is also removed following the standard trace-operation,
which is here equivalent to a sum over density matrices,

ρεi = Tr∆ϕ(ρ
∆ϕ,ε
i ) =

Nϕ
∑

m

ρ
∆ϕm,ε
i , (3.28)

and by repeating the procedure in the same way with respect to frequency, we thus
arrive at a final ρi describing the state of the idler,

ρi = Trε(ρ
ε
i ) =

Nε
∑

n

ρεni . (3.29)

Both of these two last operations were appropriate as a consequence of the entangle-
ment between signal and idler photons. The entanglement leads to an incoherent
mixture of density matrices for each photon separately, which mathematically is
equivalent to a sum of density matrices in the degree of freedom to be traced away.

The final density matrix is mixed in general, which means that it describes mul-
timode emission, and not single-mode emission. As a density matrix is diagonalized
it becomes decomposed into a sum of its coherent parts, that is, single-modes. By
diagonalizing Eqn. (3.29), we therefore get a representation of the multimode emis-
sion in terms of an incoherent sum of orthogonal single-modes, weighted by their real
eigenvalues. The procedure can be quantified in the following way; the reduced den-
sity matrix is first diagonalized by T−1ρT =D, such that T = (|ζ1〉, |ζ2〉, . . . , |ζNθ

〉)
has the eigenvectors in the columns, and D has the eigenvalues λn in its diagonal
elements. The result is a density matrix that can be represented as a sum of pure
states,

ρ =

Nθ
∑

n=1

λn|ζn〉〈ζn|, (3.30)

where Nθ is the Hilbert-space dimension. The finite set, |ζn〉, now forms the sought
basis, which we would like to view in terms of the form of its basis-vectors. Let us
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Figure 3.6: The electrical field eigenmodes of the emission generated numerically
from a particular case of quasi-phase-matching at optimal focusing. The weights
(eigenvalues) of each field mode are; λ0 = 0.9531, λ1 = 0.0332, λ2 = 0.0105,
λ3 = 0.0018, which suggests that this emission is mostly in a single mode, in fact
close to the fundamental Gaussian mode.

therefore introduce a discrete representation of these basis-kets: ζn[θ], where θ is the
polar angle, such that axy[θ] =

∑

n λn|ζn[θ]|2 becomes the two-dimensional angular
spectral form taken as the absolute square of the modes, and uxy[θ] =

∑

n λn|En[θ]|2
the form of the two-dimensional electrical field, where the field amplitude En[θ] is
the Fourier-transform of ζn[θ]. In rectangular components (θ2 = θ2x+ θ2y), the form
of each field-mode becomes

un[θx, θy] = λn

∣

∣

∣
En

[√

θ2x + θ2y

]∣

∣

∣

2

. (3.31)

In Figure 3.6 is shown a case of the normalized forms of the four lowest order
electrical field modes, un[θx, θy], as determined by Eqn. (3.31). The fundamental
eigenmode, E0, is very close to the fundamental Laguerre-Gaussian mode, as one
can suspect by looking at the leftmost image.

3.2 Coupling into optical fibers

As previously stated, an important concern in quantum communication and in
quantum computation using linear optics, is to prepare single photons in well-
defined modes. For many applications it is necessary to collect the photons into
fiber optical transmission links. The single-mode fiber defines precisely such a well-
defined mode, and makes via spatial indistinguishability a perfect ground for many
experiments involving interference, as most long-distance communication schemes
do. We have also talked about the importance of preparing the two-photon state
such that both photons of a pair will have a high probability of entering the fibers.
To characterize sources of photon pairs based on SPDC and quasi-phase-matching
we will make use of three parameters: single coupling, conditional coincidence, and
pair coupling. In due order, the single coupling represents the fractional amount
of photons collected by each fiber independent of the other. The conditional coin-
cidence represents the fractional amount of photons, corresponding to one part of
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Figure 3.7: A principle sketch of fiber coupling, showing the pump beam, the crystal
emission, the fiber’s target-mode, and the single-mode fiber itself. The refraction
at the crystal edges is neglected in the drawing.

the pairs, that are collected into its fiber conditioned upon the fact that the partner
photon also entered its fiber. It is useful in the characterization of heralded single
photon sources. Finally, the pair coupling represents the fractional amount of pairs
for which both photons enters its own respective fiber. The last parameter finds
its use in characterizing sources of entangled photon pairs. All three parameters
can be optimized with respect to the focusing of the pump beam and the fiber-
matched modes, as has been done in Paper C. By the latter we mean the mode
of the fibers as seen from the crystal, that is to say, the form of the mode that
can be traced back from the fiber to the crystal at the same time not worrying
about any optics in-between that may serve to perform the actual transformation.
A sketch of the principal arrangement for fiber coupling is shown in Figure 3.7. As
we will soon show by determining the waist of the emission, the magnification of
the optical focusing system from the fiber-tip to the crystal center needs to be in
the order of unity. The single-mode fiber waist radius is a few µm and its true
mode is described by a Bessel function J0(α), which is defined as the solution to
1
2π

∫ 2π

0
exp (iα cosϕ)dϕ. Luckily, to simplify things somewhat, it can be approxi-

mated very well by the fundamental Gaussian mode, TEM00, which is here given
in the angular spectrum form,

|G00〉 =
kZw00√

2π
e(k

Zw00)
2 sin2(θ)/4 |θ〉, (3.32)

where w00 is the waist radius of the fiber-matched mode, and kZ is the k-vector
inside the crystal for light polarized along the Z-axis. We shall also assume the
pump beam to be in the fundamental Gaussian single-mode.

Mathematically, the single coupling efficiency is simply the result of the stan-
dard trace operation, γ = Tr(|G00〉〈G00|ρ), but an equally valid definition is ob-
tained through the eigenmodes of the angular spectrum,

γ =

Nθ
∑

n=1

λn|〈ζn|G00〉|2, (3.33)
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where |ζn〉 is given by the density matrix, ρs or ρi, as defined by Eqn. (3.30), re-
sulting in γs or γi for the signal and idler, respectively. Eqn. (3.33) can readily
be interpreted as taking the overlap between the fiber-mode and each of the eigen-
modes, weighted by its eigenvalue and summed over to get the collective overlap,
which will then represents the total single coupling efficiency.

The analysis above clearly takes care about the spatial degrees of freedom in
terms of the angular spectrum. However, implicitly included is also temporal filter-
ing, which enters through the frequency dependence of the k-vectors and the filter
shape amplitude in Eqn. (3.21). In this respect, there is one issue worth noting
that relates the filter bandwidth to the coupling efficiency, namely the observation
that the emission from SPDC is spread over a wide frequency spectrum, while the
interference filters used are relatively narrow-band. In that sense, there is not much
meaning for any of the coupling measures to include photons which never have a
chance to pass through the frequency filter. What we would like for the coupling
parameters to measure, is the fractional amount of photons that enters the fibers
among those that are also temporally filtered. For example, for any fixed filter
bandwidth and no spatial filtering, which is almost the case for a multimode fiber,
any measure of the coupling should be perfect, that is, unity. Alternatively, with-
out interference filter, we could instead choose to define the coupling parameters in
relation to the bandwidth of the fiber’s own frequency filtering at optimal focusing,
which is determined for each length of the crystal. As we have showed in Paper C,
the fiber itself also effectively filter in frequency via its spatial filtering. This is
because there is a connection between the direction of the wavevectors and their
frequency. We will return to this problem in Section 3.6.

Before we continue with the problem of optimization, and its main results, we
shall also in more detail define what we call conditional coincidence, µi|s, which
is useful for the characterization of heralded single photon sources. In words, the
conditional coincidence is defined as the probability to find one photon of a pair
in its fiber given that the partner photon has entered the fiber. In the following
example, we will hence condition the idler photon upon detection of a signal photon,
in accordance with our heralded photon source. The signal photon entering the fiber
can be described mathematically by the following measurement operator,

Ms = |G(s)
00 〉〈G

(s)
00 |. (3.34)

Starting from Eqn. (3.26), we will first remove the frequency and azimuthal degrees

of freedom, leading to the two-photon density matrix, ρsi = Tr∆ϕ,ε(ρ
∆ϕ,ε
si ). We

can then perform the measurement accordingly and get the conditional two-photon
state,

ρsi|s =
Ms ⊗ 11iρsiMs ⊗ 11i

Tr(Ms ⊗ 11iρsiMs ⊗ 11i)
. (3.35)

We continue by taking the partial trace over the signal to get the conditional state
of the idler, ρi|s = Trs(ρsi|s). The conditional coincidence can now be defined in a
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Figure 3.8: The figure shows a Venn diagram that is used to illustrate the single
coupling efficiencies γs and γi, pair coupling γc, and conditional coincidences µs|i
and µi|s as a fractional number representing the area of a set of elements. Each
element represents a pair of photons generated by the crystal within the bandwidth
of the detector filter ∆λ, that can be either wide or narrow.

similar way as the single coupling,

µi|s =
Nθ
∑

n=1

λn|〈ζn|G(i)
00〉|2, (3.36)

except this time, |ζn〉 is given by the diagonalization of ρi|s.
Finally, we have the pair coupling, which is defined as the probability to find

both photons of a pair in the respective fibers. The pair coupling is most simply
derived in terms of the single and conditional coupling applying Bayes’s rule,

γc = µi|sγs = µs|iγi. (3.37)

Analytically simple, but more computationally more demanding2, is to define the
conditional coupling as γc = Tr(Ms⊗Miρsi), whereMi is given similar to Eqn. (3.34).

A graphical illustration of coupling

In Paper C and Paper B we also introduced a graphical way to illustrate the
problem of photon collection. It is based on the concept of Venn diagrams, repro-
duced in Figure 3.8. The figure shows the different types of coupling efficiencies
represented as sets of elements, where each element of a set represents a photon
pair generated by the crystals in some spatial mode. That is, the collection of all

2It is quite cumbersome to do the numerical calculations since we need the whole description
of the two-photon state, ρsi, which is very large for the needed resolution. For γs,i and µi|s, only
the reduced density matrix in one of the subsystems, ρs,i or ρi|s, is needed.
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Figure 3.9: The geometry of focusing. The focusing parameter of the pump mode
or fiber-matched modes is defined as ξ = L/zR, where L is the length of the crystal
and zR is the Rayleigh-range.

elements within each set defines the pairs that are coupled into the fiber for some
specific focusing condition in such a way that the coupling efficiency corresponds to
the total area of the set. The elements contained in a specific set represent photon
pairs that are coupled into a fiber taken from the universal set of pairs, Ωp, which
contains all pairs generated by the crystal within the bandwidth of the detector
filter ∆λ. The set Ωp is normalized to unity and represents perfect coupling of all
pairs into the fiber. The union of the two sets represent photon pairs that both are
coupled into the fibers.

It is also in place to discuss the procedure of optimization of the focusing before
the numerical results. For this purpose, Figure 3.9 shows a sketch of the geometry
of a Gaussian beam propagating through the crystal. The beam profile defines
the general parameters involved in focusing of a beam apart from the wavelength;
namely the beam waist radius, w0, and the beam waist location, z0. These param-
eters characterize both the pump’s mode and the signal’s and idler’s fiber-matched
modes, which can all of course all have different waists. To quantify the focusing
we have used the following dimensionless parameter,

ξ =
L

zR
, (3.38)

where L is the length of the crystal and zR is the Rayleigh-range of the pump, signal,
or idler. (It was first introduced in this context by Boyd and Kleinman [1968], but in
a slightly different form than here.) The maximum achievable coupling efficiencies
are determined by the optimization of Eqn. (3.33) or Eqn. (3.36) with respect to
the focusing parameter3 for the pump ξp, signal ξs, and idler ξi, respectively,

γopt = max
ξs,i

γ(ξp, ξs,i), (3.39)

and similarly,

µopt = max
ξs,i

µ(ξp, ξs,i), (3.40)
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where in both cases,

ξopt = argmax
ξs,i

µ(ξp, ξs,i). (3.41)

In connection, we should note that all the three coupling parameters assume
perfect temporal correlation (i.e. time-matched conditional gating) and perfect fre-
quency correlation (i.e. matched filters), so that the optimization only covers the
spatial degrees of freedom. Returning shortly to the geometrical picture with this
object, the consequence is that the pair coupling γc, in general, is completely discon-
nected with the single coupling, γs and γi, because the latter two do not represent
uncorrelated events. To be more precise, and complicate the use of the diagram
somewhat, we point out the fact that each element represents a pair that consist of
two parts, each belonging to different subsystems that are not addable in a strict
sense. Nevertheless, the picture using the Venn-diagram is still valid for many types
of sources, and is helpful for purpose of illustrations and thinking. As should be
clear from Figure 3.8, γc 6= γsγi in general, which stands in contrast to the not
too uncommon assumptions used in the literature to estimate photon-rates. The
diagram supports the intuitive feeling obtained by most experimentalists tweaking
the system for maximum coincidence rates, namely, that it is not necessarily best
to optimize each arm individually to get the largest coincidence rate, but rather,
to simultaneously optimize both arms.

The main results for the single coupling of the idler, γi, is shown in Figure 3.10
for different focusing conditions of the pump beam and the idler’s fiber-matched
mode. The graph was generated from a numerical simulation that had to run for
about two days on a standard personal computer4. The calculation was set to
simulate a non-degenerate phase-matching condition, supporting the wavelength
combination of 532 nm, 810 nm, and 1550 nm for the pump, signal, and idler,
respectively, in a periodically poled KTiOPO4 crystal. For each sample in the
plot, the idler fiber focusing was optimized using Eqn. (3.39), to find the maximum
coupling γopti . As observed, the same maximum coupling value can be attained for
any length of the crystal by setting the pump-beam waist radius accordingly. The
straight lines indicate that the optimal focusing parameters of the pump, ξp, and
the idler fiber focusing, ξopti , are both constants, which means that the geometry
of the beam profile in relation to different crystal lengths should stay fixed at
optimal focusing. The maximum efficiency is about 95% for ξp = 0.9 and ξopti =
2.4. Interestingly, we observe that as long as the fiber focusing is matched to the
pump focusing, for any given length of the crystal, the coupling efficiency will reach
> 45% irrespectively of the pump focusing, which is illustrated by the minimum
value of γi in Figure 3.10. This fact may very well explain the relatively high
efficiencies nevertheless achieved in many fiber-based SPDC-setups for which the

3Details on how ξ relates to the emission modes, |ζn〉, via w0 and z0 can be obtained in
Paper C.

4Pentium4, 1.8GHz, 256Mb
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Figure 3.10: The single coupling efficiency of the idler, γopti , for a narrow filter
bandwidth, ∆λnarrow, showing that about 95% of the photons are possible to collect
into single-mode fiber at optimal pump focusing, ξp ≈ 1 (solid lines), and idler
focusing, ξopti ≈ 2 (dash-dotted lines), when emitted from a PPKTP crystal. The
numbers in the graph indicate the value of ξ for each line.

experimentalist have perhaps not worried about changing the pump’s focusing,
but solely the fiber coupling. However, the graph shows the importance of also
optimizing the pump in order to “squeeze all the juice” from the crystal.

When and why is the emission single-mode?

In essence, the general result of optimal focusing can be stated as maintaining a
fixed geometrical relation between the crystal length and the beam modes. Not
surprising, there is also an intuitive understanding behind the result, which was
not really presented in Paper C. Before we make an attempt to present it, a
comment on the effects of frequency filtering shall be of help: As is apparent from
the two-photon state, Eqn. (3.21), the angular spectrum of the emission is described
by a sinc-function term. Considering a focused pump beam and a finite filter, there
will be many such sinc-functions describing the emission, one for each plane wave
component and one for each frequency component. The sinc-functions pertaining to
frequency will add up incoherently in a complicated manner and hide our following
reasoning, which has its goal to illustrate when and why the emission becomes
multimode or single-mode without looking to frequency. Therefore, to that end,
the frequency part shall effectively be ignored by looking only at a single frequency
component (i.e. an infinitely narrow filter). The graph in Figure 3.10 was also
generated using an infinitely narrow filter as we did not want to show the effects of
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Figure 3.11: Transverse multimode, longitudinal multimode, and single-mode emis-
sion for different focusing conditions of the pump, ξp. The arrows represent the
emission and the profile represents the pump beam, ignoring refraction at the crys-
tal ends.

a finite filter bandwidth; namely that the coupling efficiency then decreases beyond
a given length of the crystal. The effects of filtering are instead studied in Section
3.6 in terms of the photon flux.

Recall from the reasoning in Chapter 2, that a zeroth order Gaussian shaped an-
gular spectrum mode defines a spatially coherent single-mode volume, transversely
and longitudinally. Imagine then the artificial case where the angular spread of the
emission, and thus its “volume”, is described by a single sinc-function. Because the
sinc-function closely resembles a real Gaussian function at some point, it will also
closely define a single-mode at that point. This single-mode can be transformed to
overlap nearly perfectly with the fundamental single-mode of the fiber using only
simple optical components, and consequently, represents an ideal coupling situation.

In a real situation, having a focused pump beam, imagine instead a collection
of several such sinc-functions (still describing the angular spread of the emission)
that originate from many plane waves, and which have their propagation direction
and transverse location defined by the phase-matching conditions. We find three
extremes: For very weak focusing (essentially a single plane wave of the pump), the
emission is described by many sinc-functions pointing in the same direction, but
located along the transverse direction in the crystal. Hardly any of them overlap,
and thereby they collectively define transverse multimode emission, leading to bad
coupling efficiency. Refer to the leftmost picture of Figure 3.11, for ξp ¿ 1.

Another case is that of strong focusing, where the many different sinc-functions
points in all different directions, depending on the spread of the plane waves of the
pump, but are located in the same transverse position. As the many differently
directed sinc-functions are overlaid with each-other they collectively define longi-
tudinal multimode emission, which neither couples well into a fiber. Refer to the
middle picture of Figure 3.11, for ξp À 1.

Clearly, multimode emission will occur for both extremes of focusing, weak
as strong. Luckily, as we have shown, there is a certain focusing which defines
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optimum, ξp = 1. At this intermediate spread of plane pump waves, all the different
sinc-functions will overlap nearly perfect in the sense that they are pointing more or
less in the same direction, and they are more or less emanating from the same spot.
It turns out that the emission is well described by a single sinc-function, which
implies good coupling efficiency according to the argumentation above. Thus, the
emission is first-order coherent to a high degree, or in other words, in a pure state
with a Gaussian shaped angular wave-function. Refer to the rightmost picture of
Figure 3.11, for ξp ≈ 1.

Regarding the conditional coupling efficiency, µi|s, (that is, the probability of
collecting the idler photon, given that its partner signal photon is in the fiber)
the results show it is mainly set by the corresponding single coupling efficiency, γi,
under the condition that the pump is focused optimally. As showed, γi approaches
unity as the focusing of the idler is adjusted towards its optimal, implying that µi|s
also approaches unity. The result is the same when interchanging the roles of signal
and idler. In terms of modes, the conclusion is that both the signal and idler will
be emitted into the same single-mode at optimal focusing, in fact, to a large part
the fundamental single-mode. If the pump is not focused optimally, the result is
less clear. However, in our example, a high value of µi|s can, in general, still be
attained at some specific idler focusing, as long as the signal focusing is matched to
the pump focusing. As we point out in Paper C, it is important to note that the
numerical results in our example are valid only for a frequency filter at the signal
side, and none on the idler. If two Gaussian shaped matched filters are used on
each side, the maximum conditional coupling efficiency, and also the pair coupling,
will be limited to 1/

√
2 = 71% as a result of the overlap of two equal Gaussian

probability distributions.

Other conclusions about the pair coupling efficiency, γc, follows from the graph
in Figure 3.12. Readily, we observe that a value close to 100 % can only be attained
when both the signal and the idler are optimally focused. By the help of the Venn-
diagram we can also observe that the pair coupling is bounded from above according
to γc ≤ min(γs, γi), which means that it is imperative that also the pump-focusing
is optimal to attain a high γc.

With that, we will leave the theory for a while, and instead summarize the
experimental work done towards realizations of sources of heralded photon pairs,
and entangled qubits.

3.3 Heralded qubits

Previously we have dealt with the problem of spatially defining a single-photon
originating from SPDC. There is also the problem of temporal definition, which
will be the topic of this section.

As said earlier, sources of single-photons are fundamentally important in all
areas of quantum information dealing with photonics. The different types of sources
that are available all have different properties like repetition rate, single-photon
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Figure 3.12: The pair coupling γc = µi|sγs at a pump focusing of ξp = 1.3, which
is a trade-off between what is optimal for the pump in the case of signal and idler
single coupling, respectively. The maximum γc is about 97%, at optimal focusing
ξs,i ≈ 2.0, using a narrow signal filter, ∆λnarrow, and no idler filter.

probability, and emission frequency. In Paper A we report on a source of single-
photons based on emission of photon pairs in SPDC. Similar work include Mason
et al. [2002]; Fasel et al. [2004a]; Alibart et al. [2005]. The idea can be simply stated
as having one of the single-photons of a pair announced its presence by the detection
event of its partner. The name “heralded” originates from the fact that the single-
photons are not created on demand with a synchronous pulse, but rather, that they
are asynchronously signaled for their presence by an external pulse. Asynchronous
here means that the time-interval between different pulses is unspecified from pulse
to pulse — a fact that may very well limit the usefulness of such sources, but ideas
for storing photons in controlled fiber-loops have been suggested to overcome the
problem [Pittman et al., 2002]. First some background:

We have already mentioned the problems associated with attenuated coherent
laser light as a generator of single-photons, such as the high probability of empty
pulses resulting from the Poisson distribution in photon number. In some work
on single-photon generation, it has been suggested to use a short-pulsed laser and
SPDC to get synchronous pulses containing single photons [U’Ren et al., 2004;
Pittman et al., 2004]. Once a photon is detected in the signal, one knows for sure
there is a photon in the idler and thereby one can avoid empty pulses to a high
degree. However, short pulses generally makes the emission coherent within the
whole length of the pulse, so that stimulated emission will be dominant. Stimulated
emission has a photon number distribution similar to thermal light and therefore
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bunching effects are present. Bunching means that photons tend not to come alone,
but several at a time. Such a property is unwanted, especially for the application
of quantum key distribution, and therefore pulsed lasers are not ideal to use either.
In essence, thermal distribution in photon number for pulsed lasers arise if: (i)
the crystal length is too long (which makes the coherence length longer), (ii) the
filter is too narrow, or (iii) the pulse length is too short. The theory of parametric
amplification has been treated thoroughly in this context by Mollow and Glauber
[1967].

Along those arguments we would instead like to choose a relatively long coher-
ence length of the pump (representing, in a way, really long pulses), like is the case
for a continuous wave (CW) laser. Even for relatively narrow frequency filtering of
the emission, the coherence length of the emission will be much smaller than the
gate-period of the detector. In such a case we have an incoherent collection of a large
number of coherent “sources”, each thermally distributed in photon number, but
collectively giving Poisson distribution. The distribution will be Poissonian if we
have (i) sufficiently short crystals, (ii) sufficiently wide filters, and (iii) sufficiently
long gate-period. For realistic numbers this will most often be the case.

Now, as suggested, we would like to apply conditional (heralded) gating to such a
source. It is shown in Paper A that by heralded gating we can modify the statistics
(distribution of photon number) even further, to show either bunching, Poissonian,
or antibunching depending on the size of the time-interval we choose to look at.
Antibunching is a purely quantum physical phenomena, which, as its name suggests,
is the opposite of bunching. Antibunching means that the single-photons tend to
come alone, and not just after or just before another one, considering sufficiently
small time-intervals. Obviously, for our purposes this is a desired effect. (Single
photons from dye molecules, or quantum dots, exhibits this feature naturally, in
contrast to the artificial effect created here by post-selection of sub-statistics.) The
size of the needed time-interval to reach antibunching is set by the detector gate-
period under the condition it is longer than the coherence time of the photons, and
depends on the overall photon rate as shall be clear from the discussion following
Eqn. (3.52).

Two things need to be noted. First, the asynchronousness in the time-intervals
are due to the random nature of photon number distribution in the emission of
SPDC. As the photon pairs from the crystal are Poisson distributed, the same
distribution will thus be provided in the heralding detection events. Second, we still
have the probability of getting empty pulses if the partner does not make it into its
fiber, but as we have shown previously it is primarily an experimental challenge to
increase the coupling efficiency and the transmission rate, and not a fundamental
problem. In contrast, for attenuated weak coherent pulses the problem of empty
pulses is fundamental. In order to appreciate the description of our heralded source
and its benchmark numbers, we need to understand some of the theory behind,
which is surprisingly rich with probabilities.
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Figure 3.13: (a) Autocorrelation of an optical field, and (b) cross-correlation be-
tween two optical fields, both at field levels where the detectors D1 and D2 registers
single photon counts within the gate-period, ∆tgate.

Photon correlations

The properties of any state of light can be described by correlation functions, and
so can the statistics of photon counts. Such a function measures the degree to
which a field is correlated with itself, or with another field, and can, for example,
be found by putting a detector in front of an optical field and register intensity
for different time-delays τ . In the context here, there are mainly two correla-
tions to worry about. First, the normalized second-order autocorrelation function

g
(2)
a (τ), illustrated by Figure 3.13a, that use a single detector to measure the corre-
lation of the field. Secondly, the normalized second-order cross-correlation function

g
(2)
c (τ), illustrated by Figure 3.13b, that use two detectors to measure the correla-
tion between two fields. Hanbury-Brown and Twiss made pioneering experiments
[Hanbury Brown and Twiss, 1956c,a,b] in which they showed intensity correlation
in starlight between two different spatially separated observers. They proved that
indeed bunching occurs for starlight, being a thermal source. The experiment was
similar to the scheme showed in Figure 3.14, that splits light from one source into
two different detectors. The autocorrelation function of the incoming light can be
derived from the measured cross-correlation between the two detectors, compare
Figure 3.14 with Figure 3.13. The true and continuous autocorrelation function
is found in the limit of infinitely small detector integration times (gate-periods),
∆tgate → 0. The graph in Figure 3.14 shows the case of thermal (solid line) and
Poissonian (dashed line) distributions, that are allowed by the semi-classical de-
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Figure 3.14: The setup shows Hanbury-Brown and Twiss’s experiment to mea-
sure correlation statistics of an optical light field (at the single photon level), and
the graph sketches the correlation function for thermal light showing bunching
(solid line), uncorrelated light showing Poisson distribution (dashed line), and non-
classical light showing antibunching (dash-dotted line).

scription of light.
In the semi-classical picture, still dealing with continuous fields, the second-order

autocorrelation function [Mandel and Wolf, 1995] is given by

g(2)(t1, t2) =
〈I(t1)I(t2)〉
〈I(t1)〉〈I(t2)〉

, (3.42)

where I(t) is the field intensity at some time t, and 〈I(t)〉 denotes the ensemble
average of a random process I(t). Rearrangement gives

〈I(t1)I(t2)〉 = 〈I(t1)〉〈I(t2)〉g(2)(t1, t2), (3.43)

or

〈I(t1)I(t2)〉 = 〈I(t1)〉〈I(t2)〉(1 + |γ(t1, t2)|2), (3.44)

where γ(t1, t2) = 〈E∗(t1)E(t2)〉
[〈I(t1)〉]1/2[〈I(t2)〉]1/2 is the first-order degree of coherence of the

electrical field E between times t1 and t2, which we have already denoted τ = t2−t1
as most processes we are dealing with here are stationary and does not depend on
the absolute time. Because γ relates to g(2) by an absolute sign, it means that g(2)

can not yet describe correlation outside the semi-classical sense, being above unity,

g(2)(τ) = 1 + |γ(τ)|2, 0 ≤ γ(τ) ≤ 1. (3.45)

Poisson distributed light is completely random and without correlations, therefore
γ(τ) = 0 for all τ as shown by the plot of g(2)(τ) (dashed line) in Figure 3.14.
For thermal light, instead, we have correlation for τ → 0, i.e. γ(0) = 1, as showed
by the solid line in the same graph. As τ → ∞, any light in the semi-classical
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description is completely uncorrelated. Hitherto, the second-order correlation has
been possible to express in terms of a first-order correlation.

To explain antibunching, which occurs for an heralded source, we need to modify
Eqn. (3.45) as

g(2)(τ) = 1 + λ(τ), −1 ≤ λ(τ) ≤ 1. (3.46)

Antibunching can be seen as a truly quantum effects, being the result of negative
probabilities and described by the new correlation function λ(τ) that can also attain

negative values. From Eqn. (3.44) and Eqn. (3.46) we get λ(τ) = 〈I(t1)I(t2)〉
〈I(t1)〉〈I(t2)〉 which

is an irreducible second-order correlation function. This is somehow the inverse
effect of the two-photon interference in a beamsplitter where two photons become
bunched, manifesting their bosonic nature.

In the spirit of quantumness, we shall abandon the intensity of a fields in place
of photon counts, which are best described in terms of probabilities of detector
clicks. The previous definition of the autocorrelation function Eqn. (3.42) needs to
be modified,

g(2)(t1, t2) =
2Pm≥2(t1, t2)

Pm≥1(t1)Pm≥1(t2)
, (3.47)

where Pm≥k is the probability to find k or more photons within the detector gate-
period. The factor 2 in Eqn. (3.47) comes from the fact that the probabilities
are normalized to attain the maximum value of unity, which is not the case for
intensities. We can simplify Eqn. (3.47) as

g(2)(τ) =
2Pm≥2(τ)

P 2
m≥1(τ)

. (3.48)

In a heralded source, one of the channels (the idler) will be triggered by a detection
event of the other channel (the signal). Refer to Figure 3.13b and picture the lower
field as the signal and the upper as the idler. The tiny dots symbolize photons.
It is clear that as τ → 0 the probability for a photon in the idler will be large
conditioned on a photon in the signal, and that the probability of an empty gate
is very small, or even zero, if the probability that the idler photon makes it from
the source to the detector is unity. If also the gate-period, ∆tgate, is short, the
probability of two or more photon within that gate is small. We are thus interested
in the autocorrelation function of the idler for τ = 0, which becomes

g(2)(0) =
2Pm≥2
P 2
m≥1

. (3.49)

We would now like to characterize our source using this quantity, which is zero for
perfect antibunching. Hence, we need to know the probabilities Pm≥2 and Pm≥1,
which can be determined by the measured rates of photons in the fibers. As the
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process is ergodic we can measure time averages instead of ensemble averages to
find Pm≥k. Note that by Pm≥2 in Eqn. (3.49) we do not care if we herald a truly
correlated pair, or an accidental, which can happen for lower than unity coupling
efficiencies and transmission factors into the fibers. It is shown in Paper A that

g(2)(0) ≈ 2[1− e−∆tgate(
RiRs
Rc

−R0)], (3.50)

is a fair approximation for small products between the average rate R̄ = RiRs/Rc

and the gate-period ∆tgate, where Ri is the singles photon rate per second in the
idler fiber, Rs is the rate in the signal fiber, and Rc is the number of correlated
pairs per second in both fibers. Using the relations between the rates and coupling
parameters,

Ri = δiγiRp, (3.51a)

Rs = δsγsRp, (3.51b)

Rc = δiδsγcRp, (3.51c)

where Rp is the rate of pairs per second in free space, δs and δi are the transmission
factors of the signal and idler respectively, together with some approximation, we
are led to

g(2)(0) ≈ 2∆tgate

(

γiγs
γc

Rp −R0

)

, (3.52)

where R0 is the rate of the signal detected and idler gated photon pairs. Again the
formula is valid only for not too large gate-periods and rates. Various conclusions
can be drawn; it is advantageous to maximize γc at the same time keeping γi and γs
small [note: γc ≤ min(γi, γs)]. Furthermore, it is noted that g(2)(0) can always be
made arbitrary small at the expense of the rate Rp, by effectively lowering the pump
power. As expected, it is also clear that ∆tgate should be as small as possible to
achieve strong antibunching. The upper value for antibunching can be determined
by the point where the light becomes Poisson distributed, ∆tPoisson = b/R̄, where
b ≈ 0.5 for coupling efficiencies and transmission factors close to unity. For example,
with R̄ = 10 × 106 [s−1] this implies gate-periods not longer than 50 ns. For
longer gate-periods the source will produce bunched photons. The value of g(2)(0),
together with the heralding rate Rs, and the conditional probability

µheraldedi|s ≈ 1−
(

1− Rc

Rs

)

e−∆tgate(Ri−Rc
Rs

R0), (3.53)

will benchmark the source in terms of its ability to produce exactly a single photon
for every heralded event. Note that we do not need to do a full Hanbury-Brown and
Twiss experiment in order to find g(2)(0), which is less straight forward for gated
detectors [Fasel et al., 2004a], all the necessary parameters are obtained by simple
singles and coincidence rate measurements. The only assumption made is that the
source produce single photons that are Poisson distributed in time, motivated by a
gate-period much longer than the coherence time of the downconverted photons.
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Figure 3.15: Experimental setup of the source that produce both heralded single
photons and entangled photon pairs. For the heralded photons experiment only
one of the crystals is needed. To characterize the entanglement from two crys-
tals the polarization analyzers made by the rightmost quarter-wave-plates (QWP),
half-wave-plates (HWP), and polarizing beamsplitters (PBS) are used. In both
experiments the photons are collected by single-mode fibers (SMF).

A single-photon experiment

In this subsection I will shortly present the results of the experiment and the work
done towards a single photon source implementation. I will bring some experimen-
tal issues to your attention that were not discussed in Paper A. The following
discussion applies equally well to the experiments in Paper B to Paper D.

Figure 3.15 shows a schematic diagram of the experimental setup. The first two
parts, photon pair generation and focusing, and the last part, fiber collection, are
sufficient for explaining the source of heralded photons. Also, only one of the two
crystals in the picture is needed. The first part consists of a spatial and temporal
single mode continuous wave laser to pump the crystal. Its line-width is 0.00001
nm, corresponding to a coherence length > 100 meters. The mode is “cleaned up”
in polarization and frequency using various filters and polarizing beam splitters.
The laser itself is frequency doubled (Nd:YAG) from 1064 nm to produce 532 nm,
and is internally pumped at 700-800 nm by solid-state laser diode. Thus, it is
clear why we need to do some extra filtering to erase the last residues of these
wavelengths. As the light levels are extremely low after the crystal (∼ 10 × 106

photon pairs per second or ∼ 1 pW), in a classical sense, one can understand why
even a tiny fraction of unwanted light, although being several magnitudes smaller
than the laser light (∼ 1× 1016 photon pairs per second or ∼ 5 mW), can disturb
the measurements. The light exits horizontally after the polarization beam splitter
and is further controlled by a half-wave-plate. Its purpose will become clear later.
The lens is used to focus the pump beam onto the crystal in accordance with
our predictions for producing emission in as much a single mode as possible. For
the purpose of precision and greater tolerance in misalignment we use achromatic
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doublet lenses. One disadvantage with such lenses, compared to ordinary lenses,
is that the gluing layer used to keep the two lenses together will fluoresce when
exposed to intense light. Therefore, we needed to place an extra shortpass filter
(Schott glass) just before the crystal. We also found that the linear polarization
of the pump was made elliptical by either the lens or the crystal, by measuring
the emission. One possible explanation is that the dispersion of the lens is made
non-centrosymmetric by an uneven thickness of the glue. In any case, the quarter-
wave-plate is set to undo the effect. When aligned to phase-match, the crystal
emits photons with the same polarization as the incoming light, i.e. horizontally in
this case. After the crystal, the pump light is blocked and reduced several order of
magnitudes in intensity by a long-pass filter. This component will have to define
the end of the pair generation part.

To look for the emission at the initial stage we used a CCD camera to monitor
any light coming in the colinear direction from the crystal. For the infrared part
(idler at 1550 nm) we used an InGaAs CCD IR-detector, and for the near-infrared
part (signal at 810 nm) we used a standard surveillance camera with a Si-based
CCD. In practice, there are many reasons to why the light is not found at a first
shot. First, assuming correct poling period of the crystal, its temperature needs
to be accurate in order to phase-match at the wavelength within the rather precise
bandwidths of the interference filters that sits in front of the camera to remove
stray light. Second, the emission needs to be focused somewhat onto the CCD to be
intense enough, and third, fluorescence again, which we found to be biggest problem.
Moving the infrared camera around the setup we could find many sources of infrared
light that may interfere with the downconverted light. In addition to hitting the
lenses, the strong pump beam or remnants of it also hits the filters and creates
fluorescence. (It is a very delicate problem to choose the right combination of filters
that does the job of removing all of the pump, at the same time transmitting nearly
perfect the downconverted light, which is several orders of magnitudes smaller than
the pump.) There is also a lot of heat radiation from the oven which also falls
into this category. Fluorescence is particularly devastating in our configuration
and we find at least two reasonable explanations. First, the wavelength of the idler
coincides to a large part with the main spectrum of the fluorescence, and secondly,
in colinear geometries the camera or the fiber-focusing needs to be directed towards
the crystal in line with every other component in the setup that may fluoresce. In
contrast, in non-colinear geometries the downconversion deviates from the pump,
which allows the camera or the fiber-focusing to be directed to the crystal at an
angle, seeing no components along the path which are hit by the pump. In the next
chapter we discuss further how the emission was characterized.

In the focusing part we made an arrangement with several lenses to achieve the
desired collimation of the signal and idler beam. As described in Section 3.2, the
focal length of the lenses have to be chosen so that the fiber-mode is matched with
the single-mode part of the emission. In this version of the experiment we needed
a double-lens configuration to increase the distance5 between the lens system and
the crystal. A dichroic mirror separates the signal from the idler into two different
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¯̄mpoisson Rs [s−1] Ri [s
−1] Rc [s−1] Pm=0 µheralded

i|s Pm≥2 g(2)(0)

- 100× 103 97× 103 27× 103 0.73 0.27 0.00022 0.0060

- 147× 103 306× 103 71× 103 0.52 0.48 0.00129 0.0110

0.02 - - - 0.98 0.02 0.00020 -

0.70 - - - 0.50 0.35 0.15600 -

Table 3.1: Rates, single-photon probability, and autocorrelation for the heralded
source of single-photons for a pump power of 540 µW for the first row, 1.2 mW
for the second, and idler gate-period of 10 ns. The last two rows show the values
obtained with a weak coherent laser pulse, attenuated to a mean photon number
m̄poisson.

paths. In front of the fiber couplers there are filters placed to block any remaining
pump light, to remove unwanted stray light, and set the bandwidth. For alignment
of the whole system the standard trick is to use backwards propagating light, hence,
we connected a laser to the farther end of the fiber and aligned by adjusting the
beam to pass through the same irises as the pump beam (but in opposite direction).
It should be noted that the source is very alignment friendly, thanks to the colinear
geometry.

To the fibers we connected single photon counters that provide an electrical
output-signal upon detection of a photon. The signal photons (810 nm) are detected
by a commercially available Si-based avalanche photo-diode (APD) module, and the
infrared idler-photons are detected by an home-made APD-module. Concerning
the home-made module, see Bourennane et al. [2001]. To reduce the dark-counts
(noise), the home-made module is gated for a time ∆tgate, usually between 1 to
10 ns, at the time when the photons are expected to arrive. The exact time is
decided by the signal detector, all in accordance with the previous discussion of the
principle of a heralded source.

Table 3.1 summarizes the achieved rates and benchmark numbers. The first and
second row are the results of the heralded source, and the last two are the results
of a source based on weak coherent laser pulses, attenuated to different average
photon numbers per pulse, ¯̄mpoisson, to resemble the heralded source. The first and
the third row have similar probabilities for more than one photon, Pm≥2, within a
pulse. But clearly, the heralded source has a smaller probability for empty pulses,
Pm=0, and a much higher probability for pulses being filled with single photons,
µheraldedi|s . Conversely, if the single photon and empty pulse probabilities are set

about the same (second and fourth row), then the probability for more than one
photon is 100 times smaller in the heralded source, showing its advantage over weak
coherent pulses. For further details please refer to Paper A.

5We are currently working on a version which have only one single lens in each arm, made
possible using a longer crystal with weaker focusing.
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I will end with a few words saying that a single-photon prepared in this way
can of course also be prepared as a qubit. Using a single crystal the photon comes
out in a particular known polarization which can be rotated into any other by
active polarization switching using half-wave-plates. It could also be prepared as
a discrete-time qubit, or a dual rail qubit, or any other representation, by suitable
transformations as we saw in Chapter 2.

A final comment will naturally lead us over to the next section, namely, that
for many useful purposes we can use the fact that the photon pairs are correlated
in polarization. If one is horizontal, the other one is horizontal, leading to the idea
to encode the idler by applying operations to the signal. For a qubit this implies
that both polarizations need to be created by the crystal.

3.4 Entangled qubits

In Chapter 2 we have already discussed in length the quantum physical principle
of superposition which leads to entanglement between two subsystems. Such quan-
tum specific correlation that entanglement gives rise to can easily6 be created by
extending our source of heralded photons. The idea that we use was originally
proposed by Hardy [1992], and implemented by Kwiat et al. [1999]. The idea starts
with the observation that for two subsystems to become entangled, they need to be
indistinguishable in all other degrees of freedom than the one which we would like
to get entangled. For our system it is natural that the two subsystems are the signal
and idler beams. They are easily separated by their wavelength information for a
nondegenarate wavelength combination. The degree of freedom which is closest at
hand to entangle is polarization, which is done by placing two crystals next each
other, see Figure 3.16. The first crystal creates, for example, vertical (V) emission

H

V

y

pump

signal
V

H

idler

x

z

Figure 3.16: A two-crystals source that creates direct entanglement.

and the second horizontal (H) emission if the pump polarization is rotated to an
angle in-between horizontal and vertical, i.e. 45◦. If both of these two processes are
made indistinguishable, as determined by the detector system, we will have a su-
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perposition between H and V in each arm. The superposition will also contain joint
correlations, as explained earlier, creating a state composed of the two subsystems
that can be written in the following way,

|Φ0〉 =
1√
2
(|Hs〉|Hi〉+ |Vs〉|Vi〉). (3.54)

The needed spatial indistinguishability is assured by the spatial single-mode
that defines the fibers. Because of the way the spatial degree and the temporal
degrees are related through the phase-matching conditions, the fibers will also per-
form frequency filtering. Helped by the limited timing-jitter of the detectors, the
indistinguishability in frequency is thus assured.

Direct and post-selected entanglement

Sources of photon pairs that are entangled in either polarization, frequency, mo-
mentum, or time, come today in a variety of flavors, that all can be sorted into two
main categories: directly created and post-selectively created. The source we started
to present here belong to the first category, meaning that as soon as the photons
exits the crystals they are directly entangled, without any need for selection of any
subset containing only some of the pairs. The original proposal used two thin type-I
phase-matched crystals, that each produce non-colinear cone-like emission. When
placing the crystals so that the cones overlap spatially, the polarization entangle-
ment will be found in any two opposite corners of the cones (or rings), representing
the two spatially separated subsystems. To date, the most popular method to cre-
ate polarization entanglement is via type-II phase-matching [Kwiat et al., 1995].
As we have described in a previous section, the output from a single crystal in
type-II phase-matching will consist of two non-overlapping but intersecting cones
(see Figure 3.3). In each cone the photons are of a different polarization that the
other, and since they are always generated in pairs, if one photon is H, the other
one is V. By spatial selection, for example a single-mode fiber or an iris, we can
make the photons in the intersection indistinguishable from each-other in any other
degree of freedom than polarization. Hence, they become entangled in polarization.

To the second category falls such sources that relies on the post-selection of
a subset of pairs of photons that are not entangled, but type-II correlated. For
example, by sending the product state |HsVi〉 = |HaVb〉 to the two input ports, a
and b , of a beamsplitter, like the one depicted in Figure 2.8, and post-selecting
only the events where the preceding detectors find one photon in each output arm,

|Ψ〉 = 1

2
(|Ha〉|Va〉+ |Ha〉|Vb〉+ |Va〉|Hb〉+ |Vb〉|Vb〉), (3.55)

we will effectively create another of the Bell-states, similar to Eqn. (3.54),

|Ψ〉 = 1√
2
(|Ha〉|Vb〉+ |Va〉|Hb〉). (3.56)

6In theory, not in practice!
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The events where both photons exits on the same ports are effectively ignored if
we look only to coincidence at the detectors. Such entangled states are obviously
much easier to create as they do not require any interaction in the form of the non-
linearity present in a crystal, but simply the generation of photon pairs combined
on a beamsplitter. Nevertheless, the method has its uses since many schemes allows
the selection of two-photon events where only half of the photons become entangled.
We have also implemented a second source that falls into this category.

Before continuing, I would shortly like to emphasize on the beautiful connection
between the post-selective generation of entanglement and non-deterministic Bell-
state analysis. As we saw in Chapter 2, the process of creating entanglement can
also be viewed through the function of a CNOT gate — a process in which product
states are converted to non-separable (entangled) states fully deterministic. In
that sense, SPDC can be seen as a (although very low) probabilistic CNOT. The
reverse process is Bell-state analysis, which, obviously, requires higher probability
of success than what is given by the inverse process of SPDC, and as explained
further in Chapter 4, most straight forward is to use beamsplitters in the same way
as described above to achieve ∼ 50% success probability. The two processes are
structurally identical, but each others reverse.

Let us go back to Figure 3.15 for a moment, noting that we are more or less
finished describing the first part of photon pair generation. In connection to the
focusing and fiber coupling parts one thing worth to mention concerns the use of
the two crystals to create two orthogonal polarizations: For good entanglement in
the fibers it is essential that both polarization are equally efficient coupled into the
fibers. It is best illustrated by returning to the Venn-diagram; however, we shall
not dig into that problem here, but instead refer to Paper B which includes a
discussion similar to the one in relation to Figure 3.8.

There are two parts in Figure 3.15 that are yet to be dealt with. First, there
is the serious problem of canceling decoherence, which will be treated in Section
3.5. In short, the crystals introduce chromatic dispersion which gives rise to tem-
poral distinguishability between the different polarizations. The effect needs to be
efficiently canceled to be able to create entanglement. Second, there are the stan-
dard polarization analyzing optics part used in detecting polarization entanglement,
which is covered in Chapter 4. Instead, we jump to a discussion on how to apply
the source within the context of quantum communication.

A scheme for quantum communication

Figure 3.17 shows a schematic diagram of an implementation of hybrid-coded en-
tanglement, which is explained in detail in Paper B. Hybrid-coded means that
qubits are encoded in polarization on one channel (signal) and discrete-time on
the other (idler). As we emphasized earlier, the polarization dispersion in stan-
dard optical fibers is a major problem for sending polarization information down a
fiber. Especially for quantum superpositions, which are unique to qubits, this type
of decoherence will completely destroy the information as the distance increases.
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Figure 3.17: Quantum communication scheme utilizing directly created hybrid-
coded entangled qubits. BS: beamsplitter; PBS: polarizing beamsplitter; HWP:
half-wave-plate; BG: Bragg grating; FM: Faraday mirror.

Therefore, we need some other representation for qubits to be sent over long dis-
tance. In the above scheme the polarization encoded photons are converted into
discrete-time representation. But only on the idler side (Bob). There is no funda-
mental reason to why two different subsystem should need the same representation
for their entanglement to remain. Moreover, it is suitable to keep the polarization
encoding on the signal side (Alice) if these photon are not to be transfered over any
distance, as it makes the detection configuration simple. Alice’s side is equipped
with a single fiber to collect the emission, together with polarizing beamsplitters,
polarization controllers, and an ordinary beamsplitter. The ordinary beamsplitter
selects between the two non-orthogonal bases, V/H and D/A, that are required for
quantum key distribution.

On Bob’s side there is one preparing interferometer and one analyzing interfer-
ometer for the discrete-time qubits. Both are unbalanced, meaning that the path
length of one arm is longer than the other. Instead, both interferometers have equal
path-differences between each’s arms. We shall see how this leads to three different
time-slots, where a single qubit (photon) can take either the long-long path, the
short-short path, the long-short, or the short-long path. The last two alternatives
will interfere and work as a complementary basis to time, such that specifically one
of the two detectors on Bob’s side will click — which one depending only on the
phase relation. Mathematically, we shall show how the time information at Bob’s
side is correlated with polarization information at Alice’s. We start with the state
given by Eqn. (3.54), before the preparing interferometer (see Figure 3.17). The
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entangled state just after the preparing interferometer then becomes

|Φ1〉 =
1√
2
(|HA〉|SB〉+ |VA〉|LB〉)

=
1√
2
(|HA〉|10B〉t0 + |VA〉|10B〉t1), (3.57)

where |SB〉 denotes that the photon took the short arm and |LB〉 the long. On the
second line we have used the notation from Chapter 2, |nanb〉t, to describe the state
in terms of photon number in the two modes of the input ports of the fiber-based
analyzer beamsplitter (na photons in port a, and nb in port b), at two different
time-slot t0 and t1. At the output of the beamsplitter the photon, upon return
from the Faraday mirror, is divided up into three time-slots, with the output ports
connected to the two detectors D1 and D2. The state is now

|Φ2〉 =
1

2
[i|HA〉(|01B〉t0 + i|10B〉t0)

+ i(|HA〉+ |VA〉)|01B〉t1

+ (|HA〉 − |VA〉)|10B〉t1

+ |VA〉(i|01B〉t2 + |10B〉t2)], (3.58)

which is also illustrated graphically by Figure 3.18. From Eqn. (3.58) and the

t0t1t2

t

P

Figure 3.18: The output of the analyzing interferometer for discrete-time qubits.
The probability for a photon to fall within the center peak is 1/2 and each of the
satellites 1/4. The dashed lines illustrate the problem of pulse-broadening due to
chromatic dispersion in the fibers, as described in Section 3.5.

figure we can observe that the entanglement between Alice and Bob is manifested
in such a way that if an H photon is detected by Alice, Bob will find a click in
either detector D1 or D2 at time-slot t0 (the right satellite peak). If a V photon is
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Figure 3.19: Experimental setup showing post-selective creation of polarization
entangled photon pairs behind a beamsplitter. The crystal is phase-matched for
type-II and emits orthogonally polarized photons both at the wavelength 1550 nm.
The pump produce 200 fs long pulses at a repetition rate of 82 MHz, and electrical
sync-pulses are used to gate the detectors. The lenses function as telescopes to
control the focusing of the spot-like emission into the single-mode fibers.

detected by Alice, Bob will find his photon in time-slot t2 (the left satellite peak). If
Alice instead happens to measure in the diagonal basis, D = H+V and A = H−V,
Bob will always detect a photon in time-slot t1 (the center peak) in detector D1 if
D was detected, and in detector D2 for A.

The idea of hybrid-coding also addresses a problem that is inherent to plain
time-coding, namely, the substantial experimental challenge of needing several in-
terferometers aligned against each other. For example, in discrete-time coding using
pulsed lasers [Brendel et al., 1999; Tittel et al., 2000], there are three different inter-
ferometers that all need to be mutually aligned, one before the crystal, one at Alice
and one at Bob. Here, there is only one that needs to be aligned with the other.
To simplify the alignment further, the preparing interferometer is half free-space
and half fiber-optical, as opposed to the analyzing interferometer which is all fiber-
optical. Making use of the free-space half, one can easily adjust the path-length
difference of one interferometer to match that of the other interferometer, which
both also need to be temperature stabilized.

Before embarking upon the problem of dispersion in the fibers and the crystals,
which has important relations to the bandwidth and crystal length, we will finish
off this section by showing an experiment on type-II parametric down-conversion
in a single-crystal configuration.

Pulsed qubits at the telecom wavelength

Figure 3.19 shows the setup. The crystal is cut for birefringent phase-matching and
creates two degenerate photons at 1550 nm from a single one at 775 nm. The two
output photons are orthogonally polarized, and by sending them to a beamsplitter
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we can post-select polarization entanglement in the coincidences, by possibly first
converting them into discrete-time representation for long distance transfer. The
experiment has been reported in Paper J, using a 12 mm long BBO crystal that was
pumped by a femtosecond pulsed Ti-sapphire laser. One motivation for having both
photons at the infrared wavelength of 1550 nm, is for the source to be used as part
of a telecom quantum repeater, working at the most transparent wavelength of the
optical fiber. A quantum repeater relies on the principle of entanglement swapping,
which has been realized working at the less transparent wavelength combination of
1310 nm and 1550 nm [de Riedmatten et al., 2005]. For the intended application it
is suitable to have pulsed pairs of photons propagating along two different optical
fiber channels, each in different directions.

The idea was first to use a relatively long crystal to achieve high photon-rates
in a beam-like (or spot-like) manner as described in the beginning of this chapter.
Our plan was that it would provide us with a well-defined beam close to the funda-
mental single-mode of the fiber, providing good coupling. However, the results were
not as good as hoped for, probably due to a combination of strong walk-off effects
of the beams in the crystals, and temporal dispersion induced by the short pump
pulse [Grice and Walmsley, 1997]. The images viewed in Figure 3.4 are the results
of placing the infrared CCD camera in front of the beam-path. Rings and spots are
emitted depending on the alignment of the crystal; however, not even the spot-like
emission turned out to produce as many photons in the fibers as was expected. It
turned out that the problem was the strong focusing, which had been set according
to ambiguous predictions. Later, we showed that for too strong focusing in long
crystals at type-II phase-matching, the beams become non-symmetric and multi-
mode, as explained by Vellekoop [2002]. This has been observed independently by
Lee et al. [2005].

Nonetheless, we repeated the famous and pioneering two-photon interference
experiment à la Hong, Ou, and Mandel, [Hong et al., 1987], to prove that the crys-
tal is emitting pairs of signal and idler photons that are both temporally coherent
and spatially indistinguishable once launched into single-mode fibers. The result
is shown in Figure 3.20. It is a purely quantum physical effect that two photons
impinging onto separate ports of a beamsplitter will always come out together, ran-
domly at either of the two output ports, as showed already in Table 2.1. Therefore,
it is sufficient to measure the coincidence rate behind a beamsplitter as a function
delay between the signal and idler as shown by the graph, to prove that we have a
true two-photon state. The effect has no classical explanation.

3.5 Decoherence mechanisms

There are two effects of decoherence present in the system presented in Figure 3.15
and Figure 3.17, that need to be controlled. First, there is a special kind of po-
larization and chromatic dispersion introduced by the crystals, which is due to the
wavelength non-degeneracy of the signal and idler, that leads to decoherence. It has
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Figure 3.20: Graph of coincidence rate versus optical delay in an Hong-Ou-Mandel
experiment. The visibility is 30% after subtraction of background counts, for a
singles rate of 7000 s−1 in the idler, and 14000 s−1 in the signal, gated at 1MHz. The
bandwidth of the interference filters were 10 nm FWHM (full-width half maximum),
corresponding to 106 µm in coherence length. Dotted line: raw-data. Dashed line:
raw-data sent through a digital lowpass FIR-filter (finite impulse response) of order
51 at a cut-off frequency of 1% of the data sample-rate. Solid line: Gaussian fit to
raw-data.

been explained well in detail in Paper B. Second, there is the standard chromatic
dispersion in the optical fibers, which leads to pulse broadening. The problem of
controlling decoherence is one of the most important issues in modern quantum
optics and quantum information, and for this purpose I will try to provide a short
explanation for it within the scope of the thesis.

Simply put, decoherence can be explained as an effect that destroys (or rather
relocates) the superpositions inherent to a quantum system. As a consequence, it
affects quantum systems such as qubits, that need coherence within its computa-
tional basis to remain as pure states. In formal terms, the process of decoherence
will couple the degree of freedom in which a qubit is encoded to some other degrees
of freedom that do not ensure indistinguishability, but rather introduces distin-
guishability. (Recall that indistinguishability is a necessary condition for a super-
position to exist in a system.) This works in the sense that our system becomes
entangled with some additional degree of freedom that the detection apparatus
ignores, or becomes part of, to effectively erase the superpositions (coherence). De-
coherence can also be understood in terms of closed and open quantum systems.
While a closed quantum system undergoes a closed (unitary) evolution and does
not interact with any other systems, an open quantum system is one which interacts
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with other systems (for example, the environment) in such a way that it becomes
a subsystem (the qubit) in the context of a greater system (qubit + environment).
The coherence of the smaller system has spread out into a bigger system. Here, we
will consider the effect of decoherence as a process that reduces the superpositions
with respect to a specific orthonormal basis, creating mixed states.

All quantum systems are open quantum systems even though the interaction
with the environment may be very small, like is usually the case for the photonic
qubit. To give a counter example showing a stronger kind of interaction, consider
the following discussion on the temporal single-mode resolution of a detector which
will help explain how the frequency work as an environment, to which our qubits will
couple and become mixtures for the particular kind of decoherence processes that
we are interested in: Looking only to coincidences between two photon pairs created
by a spontaneous parametric downconversion, the coherence time ∆t and thus the
precision to which the photons simultaneously arrive at two perfect detectors, will
in principle be given by the bandwidth, ∆ν, of the interference filters in front of
the detectors according to ∆t = 0.44/∆ν (for a Gaussian spectrum). (In our case
the pump has a very narrow spectrum and very long coherence time leading also to
small frequency uncertainty and long coherence time in the emission.) Now, in order
to verify the above relation and measure the coherence time directly by coincidence
detection similar to the experiment of Hanbury-Brown and Twiss, the detectors nec-
essarily need a timing-jitter much smaller than the coherence time7. However, filter
bandwidths used in practice are relatively large > 0.1 nm, in wavelengths, which
makes the timing-jitter (∆tjitter ≈ 350 ps) orders of magnitudes larger than the
corresponding true coherence time. This effectively means that the detector itself
sets a minimum resolution for the wavelength, ∆λres = 0.44λ2/c∆tjitter, such that
the coherence time of the photons detected in coincidence are practically longer,
set by the timing-jitter. In other words, and here comes the point; as the detector
in principle can determine the photon’s frequency components in a fine resolution,
it means that the frequency components should all be added incoherently within
the filter bandwidth. The incoherent nature is here a distinguishing mark for dis-
tinguishability. It is mathematically equivalent to saying that the detector traces
over the frequency, i.e. the temporal degree of freedom. The number of temporal
modes we trace over are set by the relation between the timing-jitter and the filter.
(An ideal detector with perfect zero jitter defines a temporal single-mode with the
filter and cannot distinguish between any frequency components and performs no
trace). In retrospect, it should be clear from the above reasoning why it can be
devastating for a qubit to be encoded into some degree of freedom that couples to
frequency.

Let us now consider the type of decoherence that can occur in a birefrin-
gent crystal, for which the H and V polarizations makes an orthonormal basis

7In Hong, Ou, Mandel’s experiment, a measurement of the timing-jitter instead of coherence
time is avoided by an all-optical coincidence measurement, using the two-photon interference effect
to measure “simultaneousness”.
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to encode the qubit. For well-defined superpositions between H and V to exist,
|ϕν〉 = 1√

2
(|H〉 + eiφ

ν |V〉), it is necessary for the phase-relation φν to be constant,

as opposed to random, for all frequencies ν included in the description of the state.
In a birefringent crystal the refractive index varies with polarization and frequency,
meaning that a qubit passing such a medium will acquire a different phase-shift8 for
each of its frequency components. Hence, the phase has coupled to the frequency
degree of freedom, which effectively is ignored by the detector system that measures
an incoherent sum of superpositions

∑

ν |ϕν〉〈ϕν |, killing the superposition.
In our two-crystals source the phase-shifts taking place are very large due to the

large non-degeneracy in frequency between the two entangled subsystems, signal
and idler, that it even leads to time-lags between the different photon wave-packets.
As explained in a different way in Paper B, we therefore have the effect of “time-
lags coupled to the frequency”, efficiently killing entanglement. Note that very
narrow filtering should, and does, bring back coherence and thus the entanglement.
As we have also showed in the same paper, the entanglement can be regained by
inserting an extra piece of crystal that reverses all time-shifts, called decoherence
cancellation in Figure 3.15.

The kind of decoherence that occurs in optical fibers can be attributed to the
phase (and even more strongly to polarization) coupled to the frequency in the
same way as described above. In connection to the discrete-time coding and Fig-
ure 3.18, the effect is that the photon wave-packets (defined by their coherence
length) become broadened as they propagate through the fiber. This dispersion is
significant for the wavelength of 1550 nm, and has its minimum at 1310 nm, leading
to decreased resolvability of the different time-slots in the discrete-time analyzer.
Again, it is possible to reverse the phase-shifts, and thus cancel the broadening
introduced by the system. For fiber systems, devices such as Bragg gratings serve
this purpose.

As noted, these decoherence effects diminish as the bandwidth decrease. There-
fore, we have found it interesting to understand how we can make the crystal itself
produce narrower bandwidth photons to match the detectors’ timing-jitter, without
reducing the flux of photons. This is the topic of the following section.

3.6 Photon-flux and bandwidth in optical fibers

Theoretically, we have shown in Paper C how the photon-flux both in free-space
and in single-mode fiber depends on the length of the crystal and on the chosen filter
bandwidth. The results are derived for a very general case of quasi-phase-matching
in a bulk crystal, taking into account the results of optimal focusing. We also
showed how the frequency bandwidth of the emission coupled into a single-mode
fiber at optimal focusing relates to the crystal length. At the moment we are unsure

8Some entangled systems, called decoherence free subsystems (DFSS), e.g. the Bell-state |Ψ−〉,
are immune to these phase-shifts if the decoherence is identical on both subsystems, as their
correlations of entanglement are invariant under rotation (different phase-shifts).
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if the result are general enough to encompass also birefringent phase-matching. We
see no immediate reasons to why it should not, although the statement is spoken
against by results of others [Lee et al., 2004]. Below follows a brief summary of the
results, that are based on both physical arguments and computer simulations using
the analysis from the beginning of this chapter.

The bandwidth of the light in a single-mode fiber at optimal focusing of both
the pump and the fiber-modes, using no separate frequency filter, is given by

∆λSM = B/L, (3.59)

where B is a material specific constant that attains different values for the signal
and idler depending on their amount of non-degeneracy. In our system showed
by Figure 3.15 using PPKTP, the value for the signal (810 nm) is found to be
Bs = 1.23× 10−11 [m2] and idler (1550 nm) Bi = 4.50× 10−11 [m2].

If a narrower filter ∆λnarrow, than the single-mode bandwidth ∆λSM, is placed
in front of the detection system the photon-flux P in both free-space and the fiber
is

P ∝ L
√
L∆λnarrow, (3.60)

which readily is proportional to the bandwidth, and grows strongly with crystal
length. Basically, Eqn. (3.60) is due to the product of three factors: (i) the intensity
of light phase-matched in the forward direction, ∝ L, (ii) the reduction of intensity
of light weakly phase-matched in the non-forward directions, ∝ 1/

√
L, and (iii) the

concentration of power to the forward direction at optimal focusing of the pump in
long crystals, ∝ L. Now, if a filter wider than the single-mode bandwidth is placed
in front of the fiber-coupling system, the photon-flux in the single-mode fiber is
instead

P ∝ L
√
L∆λSM ∝

√
L, (3.61)

for any filter ∆λwide > ∆λSM. The growth of photon-flux for different bandwidths
can be found in Figure 11 in Paper C. Some of these results were also confirmed
experimentally.

The obvious conclusion to draw is that both high photon-fluxes and a nar-
row bandwidths are achieved for long crystals, making it a natural choice if such
properties are desired. As we already motivated in the previous section a narrow
bandwidth is advantageous to limit the effects of decoherence. High photon-fluxes
are not necessarily advantageous, as a high rate will increase the risk of accidental
and false coincidences due to the Poisson distributed light, thereby reducing entan-
glement and/or increasing the probability for presence of more than a single photon
in a heralded source. However, it is just a matter of reducing the pump power, and
so the implication for long crystals is simply that we can use compact and cheap
low-power laser-diodes to a greater extent.

To finish off this chapter I would like to put our work in context to others by
referring to the Appendix A and a table which may be of interest mostly to the
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specialists. The table shows a compilation of published results from many different
groups working on sources of photon pairs and/or entanglement developed within
the framework of quantum communication or quantum information. The detection
rates and coupling parameters that we have achieved experimentally are reported
in detail in Paper A and in Paper C. In the table we have included results of
parameters that are commonly used to characterize the quality of entanglement,
such as the visibility of the second-order correlation function and the violation of
the CHSH-inequality parameter S. Such kind of measures will be discussed in the
following chapter.



Chapter 4

Characterization of qubits

The state of a quantum system provides complete information on the possible out-
comes of any future measurements made on the system. Ideally, we would like
a source to produce qubits in a predetermined state, and it is therefore essential
to be able to verify this experimentally by reconstructing the output state of the
source in the form of a density matrix. It is impossible to make a reconstruction
using a single qubit of an unknown state in a single measurement. Therefore, many
identical member qubits of an ensemble are needed to be projected onto different
basis states in a process called tomography. There are several ways in which we can
characterize the qubits depending on their implementation. In the previous chap-
ter and in Paper C, we searched theoretically for the state of the spatial modes
for a polarization encoded photonic qubit, created by the process of spontaneous
parametric downconversion. In Paper C we also compared that result with an
experimental characterization. However, to experimentally determine the full state
via tomography is difficult in the spatial degree of freedom, so instead we used the
theory of optical beam propagation to quantify the emission. In contrast, for the
polarization degree of freedom which contains the computational basis, the full den-
sity matrix is much easier to find. Such a measurement was performed in Paper B
to characterize the entanglement. In due order of the sections, see further Siegman
[1986]; Bouwmeester et al. [2000]; Altepeter et al. [2005a].

4.1 Mode-profiling

A complete spatial tomography would require taking images of the emission and
record the transverse shape of the electrical field. However, in general, using a CCD
camera only the intensity is monitored and not the phase of the field. If we look
at the emission from the crystal as an optical beam, we can instead characterize it
with a single parameter. The theory of optical beam propagation can be applied
equally well at the level of single photons and constitute no fundamental obstacle;
we need simply to use CCD sensors made for single photon detection. One way
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to determine the quality of a laser beam is by measuring its longitudinal intensity
profile. All light that is coherent enough to define a beam will at some point along
its line of propagation necessarily have a waist, that is, a smallest radius. Only
a beam described by the transverse fundamental Gaussian, TEM00, with a purely
real phase at its waist, will be in a coherent single-mode at the waist, all others will
be multimode (see Figure 2.2). For example, the higher order Laguerre-Gaussian
or Hermite-Gaussian modes are not diffraction limited and become multimode at
the waist. The challenge of fiber coupling is to arrange for the optics to focus the
beam such that its waist hits exactly at the end facet of the optical fiber. For a
single-mode fiber it is thus necessary that the beam is in the fundamental Gaussian
mode to achieve perfect coupling efficiency.

The transverse radius w(z) of a Gaussian beam has the following form,

w(z) = w0

√

1 +

(

z − z0
zR

)2

, (4.1)

where w0 is the beam waist radius at z = z0 , and zR is the Rayleigh range defined
by

zR =
πw2

0

M2λ
. (4.2)

The parameter M2 was introduced by Siegman [1993a,b] as a measure of how close
a beam resembles the fundamental Gaussian mode. For the TEM00 mode M2 = 1,
and for all higher order modes M 2 > 1. It has become a standard beam quality
measure in laser engineering. In theory, the only well-defined measure of the beam
radius w(z) that guarantees Eqn. (4.1) to hold for all types of transverse beam
modes is w(z) = 2σ(z), where σ(z) is the standard deviation, or the second-order
moment, of the transverse intensity profile, I(y, z). Thus, the challenge of finding
the M2 factor is to determine σ(z) for not too short distances z around the beam
waist location z0 .

Theoretically, σ(z) is indirectly provided by the discrete function ζn[θ], which is
the plane wave function representation of the angular spectrum |ζn〉 of the different
modes n of the emission, as derived in Eqn. (3.30). First, the electrical field is
obtained by a discrete Hankel transform as

En(x, y, z) =
∑

θ

λnζn[θ] e
−ikz cos θJ0

(

k
√

x2 + y2θ
)

, (4.3)

where the basis functions J0(α) are the standard Bessel functions of zeroth order.
The intensity is given as an incoherent sum of all field-modes,

I(x, y, z) =

Nθ
∑

n=1

|En(x, y, z)|2, (4.4)
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which leads to the transversely integrated intensity profile I(y, z) =
∑

x I(x, y, z).

Experimentally, the transverse intensity profile is found by taking images of the
beam along a number of point on the z-axis. The beam radius is then numerically
extracted from the data. However, it turns out to be much more accurate to
determine σ(z) by fitting a Gaussian to the raw-data, rather than determining
σ(z) directly, as the noise will otherwise have a too strong impact on the result.
Although beam quality measuring apparatus exist, they still use too low sensitivity
CCD detectors for single photon applications. We found it to be a particularly
skillful art to measure theM 2 factor correctly at single photon level with homemade
alignment rails and software, especially at the infrared wavelength. To conclude,
in Paper C there is an interesting theoretical plot that relates the single coupling
efficiency to the M2 factor, besides a plot of the experimental values obtained.

4.2 Bell-state analysis

The Bell-state analyzer is a key component in quantum communication systems.
As the name suggests, it distinguishes between the four different types of two max-
imally entangled qubit pairs, the so-called Bell-states, Eqn. (2.17). In contrast to
tomography, the Bell-state analyzer must work by making only a single measure-
ment on a single sample of the entangled qubits. As a result, the measurement
needs to be a joint projection of the qubits onto the Bell-basis. The circuit that
performs such a measurement is depicted in Figure 4.1, and transforms entangled
states into product states. It uses a CNOT gate and a Hadamard transform in
the reverse direction of the circuit that creates Bell-states from product states in
Figure 2.11.

b′

a′

b

a H

Figure 4.1: General Bell-state analyzer.

The realization of a CNOT for polarization qubits is not trivial however, as we
discussed in Section 3.4. Via the nonlinear interaction in a crystal, only a very
low efficiency of about 10−10 can be achieved for the CNOT function [Kim et al.,
2001]. In addition, it has been shown that a maximum 1/2 of the states can be
distinguished deterministically when limited solely to linear optics [Calsamiglia and
Lütkenhaus, 2001]. Such a scheme uses the interference effects in the beamsplitter
[Hong et al., 1987] by post-selecting events where the beamsplitter acts as “half a
CNOT”, according to Table 2.1. The simplest linear optical Bell-state analyzer sorts
the outcomes into 3 classes: |Φ+〉, |Φ−〉, and |Ψ±〉, which correspond to gathering
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Figure 4.2: a) Linear optical fiber-based Bell-state analyzer for polarization qubits.
BS: beamsplitter; PBS: polarizing beam splitter; PC: polarization controller. b)
Linear optical CNOT for polarization qubits. The lower polarizing beamsplitter is
rotated to the complementary basis.

log2(3) = 1.59 bits of information out of 2 possible bits. Figure 4.2a shows a fiber
optical realization of such an analyzer.

Surprisingly, it has been shown that if we allow the gate to work only partly, that
is indeterministically, it is possible to implement a CNOT that can be used to dis-
tinguish all of the four Bell-states by exploiting the nonlinearity of measurements,
using only single photon sources and feedback information from single photon de-
tection [Knill et al., 2001]. A signal will announce when the gate has succeeded,
and the gate can thus be seen as a heralded operation similar to heralded single
photon sources. The gate succeeds typically with a probability of 1/16 and has
very complex structure using dual-rail qubits. Nevertheless, the same team showed
that the probability approaches unity, (1− 1

n ), in the limit of a large number, n, of
used single photon sources and detectors. A simpler scheme for polarization qubits
was proposed by Koashi et al. [2001], using an additional entangled state and two
single photons, working with a probability 1/4 but destroying the output photons
in case of failure. An even simpler proposal uses only a single extra entangled state
and works 1/4 of the time [Pittman et al., 2001; Gasparoni et al., 2004], see Fig-
ure 4.2b. Based on the same implementation, Walther and Zeilinger [2005] recently
demonstrated a Bell-state analyzer that can distinguish all of the four Bell-states
with a probability of 1/16 in passive operation, and 1/4 with active polarization
control of the output.

The search for good working CNOT gates and Bell-state analyzers is currently
a big experimental challenge of utmost importance for pushing the fields of optical
quantum computing and quantum communication forward.
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4.3 Entanglement tests and tomography

The first test of entanglement was proposed in a seminal paper by Bell [1964], in an
effort to settle the debate whether or not the EPR-effect [Einstein et al., 1935] could
be explained by a limitation of access to classical information, so called “hidden
variables”. He derived an inequality that must hold for all local realistic models
explaining the outcomes of a sequence of correlation measurements, and showed
that entanglement indeed violates this inequality. Experimentally Bell’s prediction
was not confirmed until much later as technology had progressed [Aspect et al.,
1982].

Consider three local properties of some objects, for example, the true or false for
each person in a group of people to be characterized by the following descriptions,
a: sings in the shower; b: is of the opinion that Metallica just makes an awful lot of
noise; or c: is a fan of fermented herring. Let n(a, b) denote the number of persons
that confess to both statements a and b. Bell’s original inequality then states that
for any fixed ensemble of people

n(a,Not c) ≤ n(a,Not b) + n(b,Not c). (4.5)

The condition holds for any type of correlations between a, b, and c for each object
individually and between each object, as described by classical probability distri-
butions. Similarly, the properties can also represent the yes and no outcomes of
measurements X, Y , and Z of a polarization encoded qubit. However, due to com-
plementarity, we cannot measure all of the three directions of the polarization qubit
simultaneously. Therefore, and as another effect of negative probability amplitudes,
two entangled qubits can actually violate Eqn. (4.5), unlike the personal tastes of
two persons.

There are several refined versions of Bell’s inequality available, of which the
generalized CHSH-inequality has become perhaps the most frequently used [Clauser
et al., 1969]. The CHSH-inequality parameter S can be written in terms of the
interference visibility V of the second-order correlation functions

Ri,j =
1

2
[1 + ijVi,j cos(4φs + 4φi)], (4.6)

obtained by rotating the half-wave plates (φs and φi) of the polarization state
analyzer part in Figure 3.15 and observing coincident detections in the signal and
idler arms. For Vi,j = 1 the correlations are perfect in each of the four combinations
i, j = {H,V} of the output arms that pertains to the two polarizing beamsplitters.
Refer to Paper B for further details. For a classical state, S ≤ 2, and for a
maximally entangled state with unit visibility, S = 2

√
2. If the states decoheres

equally in all bases a violation implies a visibility larger than 71%. However, when
the states decoheres only in the computational basis, as in our case, it suffices with
a visibility of 41% in that basis to prove that we have entanglement.

In recent years, several measures of entanglement have been suggested or adapted,
like for example entanglement of formation [Wootters, 1998], entanglement witness
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Figure 4.3: Experimentally determined density matrix obtained by quantum state
tomography on a polarization entangled state (1 = vertical and 2 = horizontal).

[Lewenstein et al., 2000] and entanglement fidelity [Nielsen and Chuang, 2000].
They all differ in their ability to experimentally detect entanglement accurately
enough in as few number of measurements as possible. However, all tests and
measures share with the CHSH-inequality the feature to be derivable from the den-
sity matrix. Therefore, full tomography of the state is considered to be the most
exhaustive way of characterizing the state to which subsequently any measure of
entanglement can be applied [Altepeter et al., 2005c]. The only obstacle is the
rather large number of measurements needed. For two polarization qubits of di-
mension N = 22, a total of 16 local measurements are needed if we are restricted
to one detector for each qubit (in principle one measurement for each element in
the density matrix), and totally 9 local measurements using four detectors. If we
also have access to non-local measurements of the type used in the Bell-analyzer
only 5 measurements are needed; in general M = N + 1. In order to minimize the
errors in the estimation of the density matrix, each measurement should not gather
any information already contained in other measurements, which means that the
measurement bases should be mutually unbiased.

Following the tomography procedure of James et al. [2001], we have made lab-
oratory software that automatically recreates the density matrix ρexpt. Figure 4.3
shows the result of one such tomographic estimation for the output of the first ex-
periment in Section 3.4. Clearly, the state closely resembles the target state of the
source, |Φ+〉 = 1√

2
(|Hs〉|Hi〉+ |Vs〉|Vi〉), and has the fidelity F = 〈Φ+|ρexpt|Φ+〉 =

0.95, which should be compared to F = 1 for a maximally entangled state. Further
details of our results can be found in Paper B, or in the table of Appendix A.



Chapter 5

Quantum communication systems

So, what is entanglement useful for? It has been found that entangled qubits can
be useful as a resource for accomplishing tasks that are not possible with classical
bits. It may sound obvious that tasks involving transferring and manipulation of
quantum states cannot be achieved classically. However, also purely classical tasks
are possible to improve on using entangled states, in some cases because entangled
qubits involve a phase term in the superposition that can be used to carry addi-
tional information, and in some cases due to the no-cloning principle. Interestingly
enough, once distributed, entanglement can be seen as a quantum channel which
needs no physical medium to transport information. In this chapter we make a
short and incomplete review of how qubits are used in quantum communication.
Good references are Nielsen and Chuang [2000] and Bouwmeester et al. [2000].

5.1 Entanglement as a resource

The phenomena which perhaps has attracted the most attention is quantum tele-
portation. Figure 5.1a shows the basic principle of transferring a partially unknown
state of a photon from one place to another without the photon itself passing the
intervening space, but using up the resource of entanglement. Let’s say two parties,
A and B, share an entangled state since long time ago, and that Alice now wants to
send a quantum state |ψ〉 to Bob. She can then perform a Bell-state measurement
between her photon of the entangled pair, and the photon who’s state she would
like to transmit, using a CNOT gate and a Hadamard transform like described in the
previous chapter. Both her photons are destroyed in the process. As a result, the
photon on Bob’s side is now in one of four possible states, |ψ〉, X|ψ〉, Y |ψ〉, or Z|ψ〉,
depending on the outcome of Alice’s measurement. If Alice sends her outcome (two
bits of information) to Bob, he can rotate his state accordingly to get exactly |ψ〉.
This is called teleportation, however, it is not exactly the kind of teleportation as
in Star Trek because it does not transfer the particle itself, nor any human. If any-
thing, it is quantum state teleportation. Nevertheless, to appreciate the phenomena
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Figure 5.1: a) Teleportation protocol. b) Dense coding protocol.

one should think about what possibly constitutes matter or energy; namely infor-
mation. For example, an atom is not different from any other atom of the same kind
except for the state it happens to be in. If we can read off the information of the
state of a particle on one place, thereby changing its state, and then read the same
information into a different particle on another place, we have effectively recreated
the “same” particle. Note that indistinguishability is a key ingredient is each step
of the protocol for the particle to become identical. Teleportation was discovered
by Bennett et al. [1993] and first realized experimentally by Bouwmeester et al.
[1997] using photons. Since then, many similar experiments have been performed
on other realizations of qubits, improving the implementation of the Bell-state an-
alyzer or extending the distance [Marcikic et al., 2003; Ursin et al., 2004]. One
can also note that if the entangled state used in the teleportation is applied with a
unitary transform (that is a gate-operation) the teleported state will exit with the
same transform applied to it, effectively realizing a gate-teleportation [Gottesman
and Chuang, 1999], which can be used for quantum computation.

A very similar type of experiment is entanglement swapping, where the photon
to be teleported is also itself entangled with another photon, such that after the
Bell-state measurement the two remaining photons are entangled even though they
never interacted [Pan et al., 1998; de Riedmatten et al., 2005]. Such a scheme
may be useful as part of a quantum state repeater, which contains the basic idea to
extend the distance over which a qubit may be sent, mainly due to absorption in
the optical fiber.

By observing that the four different Bell-states give four different outcomes in a
perfect Bell-state analyzer, we can also get the idea that a single photon entangled
with another one can actually carry two bits of information (a single qubit contains
only one bit) [Bennett and Wiesner, 1992; Mattle et al., 1996]. This is called dense
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Figure 5.2: c) Entanglement distribution protocol. d) Quantum key distribution
protocol.

coding and is depicted in Figure 5.1b. It is basically the reverse of teleportation.
Alice starts off with the entangled state |Φ+〉, and sends only one of her both
photons to Bob, which then applies a unitary transformation I, X, Y , or Z to the
photon corresponding to the classical bit-values 00, 01, 10, and 11, thereby rotating
the joint state to one of the four states |Φ+〉, |Φ−〉, |Ψ+〉, or |Ψ−〉. As the particle
is sent back to Alice is carries two bits of information that can be read off in a
Bell-state analyzer. Thus, one bit is encoded in the qubit state value and the other
bit in the phase between the qubit-states, according to Eqn. (2.17).

By the same token, we can also distribute any of the Bell-states by sending a
single qubit and two bits of information telling which of the Bell-states are sent,
or for Bob to decide which state to transform to as in Figure 5.2c. For complete-
ness and illustration, the principle of quantum key distribution (QKD) based on
entanglement can also be illustrated in circuit form, see Figure 5.2d. The single
bit which is communicated contains information regarding the basis which Alice
chose to encode her qubit in. As both Alice and Bob know the exact state of the
entangled photon pairs they will end up with two deterministically correlated bits,
assuming perfect conditions.

5.2 Quantum key distribution with entanglement

Quantum cryptography based on measuring Bell-inequalities in two complementary
bases was proposed by Ekert [1991], and has been implemented in a variety of forms
since then. The idea is that any attempt of eavesdropping inevitably leads to a vio-
lation of Bell’s inequality which Alice and Bob can detect. In terms of security, the
violation the inequality is at equal footing with the errors that are introduced in
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Figure 5.3: Quantum key distribution system using the hybrid-coded entanglement
presented in Paper B. On Alice’s side is a source of polarization entangled photon
pairs. PBS: polarizing beamsplitter.

single-qubit quantum cryptography. The implementations of entanglement-based
quantum key distribution is not as mature as weak-pulse QKD due to somewhat
more demanding experiments. However, several proof of principle experiments have
been performed, for example: polarization encoding in fibers [Jennewein et al., 2000;
Poppe et al., 2004] and free-space [Naik et al., 2000], or discrete-time [Tittel et al.,
2000], with the early references limited to meter-range distances. These schemes
share the property of having both photons at the same wavelengths (either ∼700
nm, or 1310 nm). The advantage of using the shorter wavelength is that very ef-
ficient single photon detectors are available. However, for fiber-transmission, short
wavelengths are highly attenuated, and therefore the wavelengths of 1310 nm or
1550 nm are preferred. Furthermore, degenerate wavelengths are advantageous
only if the source is to be placed in the middle between sender and receiver. How-
ever, such a placement of the source is not needed for direct (non-relayed) QKD.
The first experiment combining a short wavelength for efficient detection, and a
long wavelength for low attenuation in fibers, was done by Ribordy et al. [2001]
using continuous-time entanglement. The setup was asymmetric in the sense that
the source of entangled pairs was located at Alice. The system generated non-
degenerate wavelengths of 810 nm and 1550 nm utilizing both efficient detection
at Alice, and the lowest possible attenuation for long-distance fiber transmission
to Bob. With this experiment they managed to reach 8.5 km, and an even longer
distance transmission of 30 km has also recently been reported [Fasel et al., 2004b],
using dispersion compensation methods.

For our scheme we took note of the non-degenerate configuration, but also pro-
posed to use a hybrid-coded scheme that mixes polarization and discrete-time cod-
ing. The scheme is presented in Paper B and is currently being finalized experi-
mentally. Since our source produce polarization entangled qubits, and only Bob’s
qubits need to be time-encoded to avoid polarization dispersion in fibers, Alice’s
qubit will remain polarization-coded. See Figure 5.3. As explained in Chapter 3,
Alice and Bob end up with correlations between different polarization settings and
time-slots detections, respectively, which will not violate Bell’s inequality as soon
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as the error-rate is too high. Note the nice feature of the random selection of non-
orthogonal basis-set as arranged by the beamsplitters. Thus, there is no need for
any active selection as with weak-pulse QKD, which is the topic of the next section.

5.3 Quantum key distribution without entanglement

Quantum key distribution all started with the very first experiment by Bennett
et al. [1992] showing the principle of the BB84 protocol [Bennett and Brassard,
1984]. Since then, much more user-friendly and compact setups have been devel-
oped, for example resulting in two commercial companies to date.

Awaiting better sources, the current implementations use weak-coherent laser
pulses as a source of “single” photons, with all the disadvantages that come along,
like empty pulses and non-negligible probability of multi-photon pulses. Still, the
first experiment to reach a long distance in fibers and observe single photon inter-
ference was performed by Townsend et al. [1993], and later refined by Townsend
[1994]. Just as with Muller et al. [1996] using polarization, and Hughes et al. [2000]
using phase, these schemes are based on one-way transmission of photons from Al-
ice to Bob. For the phase-type of encoding, which is suitable for fiber-transmission,
Alice creates a single photon which she encode in phase by sending it through
an Mach-Zehnder interferometer equipped with a variable phase-shift. The phase
qubit is sent to Bob who decodes the qubit using an exactly equal interferometer
placed in front of a single photon detector. For the B92 protocol [Bennett, 1992],
only two different values of the phases need to be controlled, representing two non-
orthogonal basis-vectors. A problem with this scheme is that both interferometers
need to be mutually aligned and stabilized, which makes the system rather sensitive
and in need for active control. Nevertheless, a 122 km experiment has recently been
performed [Gobby et al., 2004].

Taking note of the problems, another scheme was suggested based on two-way
transmission [Muller et al., 1997]. By replacing Alice’s interferometers with a Fara-
day mirror, one can ensure that the photon sent out by Bob comes back to his
interferometer in the same polarization as it went, despite strong birefringence.
Thereby, the same interferometer can be used twice and one avoids the stabiliza-
tion problem, see Figure 5.4. It works in the following way: The source produce
a strong coherent laser pulse which is split into two different pulses in the inter-
ferometer. Both of these pulses propagate in the fiber and are reflected back to
Bob by a Faraday mirror1. Alice first applies a phase shift to one of the pulses,
and because the pulse now carries information in one of two complementary bases,
it is necessary before the back propagation to attenuate the pulse down to sin-
gle photon level. Once back in the interferometer, Bob also applies a phase-shift,
and depending on the phase-difference the photon gives a click in either detector.
One can see the transmission line as a very long Mach-Zehnder interferometer, and

1A device that flips the polarization upon reflection; in the qubit-sphere it takes a state to its
opposite diagonal corner, see Figure 2.3.
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Figure 5.4: Quantum key distribution system using weak coherent pulses à la “plug
& play”. The implementation of the B92 protocol as presented in Paper F used
only one detector. FM: Faraday mirror; ATT: attenuator; PC: polarization con-
troller; PBS: polarizing beamsplitter; C: circulator.

due to its remarkable stability, it can be said to be auto-compensating. Hence,
the system is sometimes referred to as “plug & play”. With small modifications,
this system has been implemented by many groups, along with the originators who
succeeded with a long-distance experiment of 67 km at 1310 nm using the BB84
protocol [Stucki et al., 2002]. The first implementation at the telecommunication
wavelength 1550 nm was reported by our group in Paper R and Paper F, using
the B92 protocol and a predecessor to the setup in Figure 5.4, using basically an
ordinary beamsplitter instead of the polarizing beamsplitter and only one of the
detectors.

To avoid empty pulses, future system will preferably use heralded single photons
from photon pairs like the one developed in for example Paper A, together with
the plug & play scheme. This would possibly also allow for random basis selection.

5.4 Authentication

The problems of cryptology does not stop with key distribution; neither does it
stop with one-time-pad encryption. Among several other problems, Alice and Bob
need to know they are talking to each other, and not to anyone else. In either clas-
sical or quantum cryptography, an eavesdropper Eve can act as an impersonator
by pretending she is Alice to Bob, and vice versa. This is a so called (wo)man-in-
the-middle attack, which gives rise to the need for the users of the crypto-system to
authenticate each others identities. Yet, when the principle of QKD is demonstrated
it is usually not questioned why the quantum channel should not be connected be-
tween locations other than the intended. Moreover, it is often silently assumed that
the classical public side-channel, which is used to agree on the signal states, error
correction, and privacy amplification, is not possible to tamper with. To guaran-
tee these conditions, a classical solution is to perform authentication using hash
functions and rely on computation assumptions for security [Wegman and Carter,
1981]. Likewise, in the context of quantum cryptography it was early observed that
an initial secret is needed to be shared by Alice and Bob [Bennett et al., 1992], and
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later it was observed that the initial secret (classical bits) can be used to select the
basis of qubit encoding in quantum key distribution [Crépeau and Salvail, 1995].
In such a case, QKD is regarded to as a quantum key growing system, whereby
part of the new key is used for authentication in a later run [Dusek et al., 1999].
Altogether, this use of QKD is unavoidable in a practical scenario where one needs
to be sure about to where the communication cable is connected.

In a real world scenario, however, it is not practical that Alice and Bob need
some initial secret to share. Rather, they would both like to commit to some trusted
third party via which they can mutually authenticate (like the government issuing
passports or the certification authorities issuing digital ID:s on Internet). Using
such an arbitrated third party, we have in Paper E investigated how quantum
methods similar as in QKD can help. Entanglement is showed to be beneficial.
It is argued that the requirements for the channel connecting Alice and Bob can
be relaxed, while the channel Alice-authority-Bob need still be non-tamperable.
As mentioned early in the thesis, this is a perfect application for satellite-to-earth
communication, where the trusted party is “inaccessibly” located in an orbiting
satellite.

Finally, it is interesting to note that while the above problem concerned the
protection of classical bits using quantum bits, the opposite problem of protecting
quantum bits using classical bits have also received some attention recently. It has
been shown that in such a case the one-time-pad can actually be reused [Oppenheim
and Horodecki, 2005], in contrast to the cardinal rule of cryptology stating the
opposite. It has been shown that qubit authentication protocols can always be
implemented by small modifications to QKD [Gottesman, 2003], due to the fact
that qubits are naturally protected by the no-cloning principle.

In summary, it is my hope to have illustrated in this chapter how the great
power of quantum protocols can complement, and sometimes even beat, classical
ones in solving both classical and quantum tasks.





Chapter 6

Conclusions and future

developments

Regarding single photon sources, we have shown the importance of being able to
control the photons in both the temporal and spatial domains. In order to be
capable of interfering photons with each other for various tasks, such as logical
gate operations and communications, the individual photons must be exactly alike,
and not even in principle distinguishable. They need to have the same frequency,
coherence length, direction of propagation, arrival time, frequency bandwidth, and
polarization, etc. In addition, a single photon source should not emit more, nor
less, than a single photon, preferably on demand. Using continuous pump light to
produce pairs of photons by the process of spontaneous parametric downconversion
in nonlinear crystals, we have shown that heralded single photon sources have some
advantages over pulsed pump light, producing in principle less multiphoton events.
Such a source was presented in Paper A. This is one of the first few realizations
of a source of single-photons at a telecom wavelength. An interesting extension of
our source of heralded single photons is a multiplexed configuration, where several
sources contribute to produce higher number states, that is, two, three, or higher
number of photons on demand. This is a long term goal for performing tests in
quantum optics, and now also for doing quantum computation.

As the technology for manufacturing quasi-phase-matched crystal materials have
progressed, periodically poles materials like PPKTP have become available for
very efficient generation of photon pairs, as a complement to birefringently phase
matched materials. Among other things, quasi-phase-matching allows a greater
freedom in the choice of wavelengths. A wavelength combination that is particu-
larly useful is 600-800 nm and 1310 or 1550 nm for the two photons of a pair. The
former range is suitable for efficient detection in Si-based single photon detectors, or
for addressing single atoms, and the latter represent the two most transparent wave-
lengths of the optical fiber. For these reasons we have for the first time in Paper D
and Paper B reported on a single-pass two-crystals source of directly entangled
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photon pairs using quasi-phase-matched crystals, that utilize the wavelength pair
810 nm and 1550 nm to be compatible with long-distance communication.

Furthermore, the single-mode optical fiber makes a perfect ground for inter-
ference experiments, as the spatial indistinguishability of the photons is naturally
guaranteed. In this respect, and as a motivation for communication, it is important
to efficiently collect the fragile photons into the fibers. In Paper C we showed how
one can optimize the focusing of the pump beam and the fiber collection optics to
achieve nearly perfect coupling into fibers, using bulk periodically poled crystals. To
our knowledge, this is the first thorough investigation of focusing-techniques for op-
timizing the fiber-coupling in QPM materials. Supported by Boyd and Kleinman
[1968], we think the results are general enough to cover also birefringent phase-
matching, but our results seem not to agree with others’ previous analysis on the
topic for that case. Naturally, wave-guided structures seem beneficial to use to
increase the coupling, as the mode of the waveguide can be constructed to match
exactly that of the fiber. Indeed, some groups have reported very high photon
fluxes. However, with our results at hand, we find it interesting to further un-
derstand if a wave-guided source is still preferable over a bulk crystal when both
types are comparable in mode-quality, considering the more involved alignment of a
waveguide. In addition, the effects of focusing in the pulsed regime in quasi-phase-
matching is yet to be investigated. Our preliminary finding is that the emission
becomes multimode if one does not compensate for the narrow pump pulse by using
a long crystal.

Another issue is the photon flux and the bandwidth of the photons. The de-
velopment of photon pair sources over the last few years have come quite far in
terms of flux, and with respect to multiphoton probabilities per gate-period for
a source producing Poisson distributed emission, it has nearly come to reach an
upper limit. Rather, what is interesting to achieve is a higher conversion efficiency,
possibly by using longer crystals and higher nonlinear index materials, so that the
needed pump-power can be reduced and allow for more compact sources. Smooth
transition to long crystals is another benefit of quasi-phase-matched materials, as
they allow colinear propagation. The other essential need in quantum communi-
cation is to produce photons of a narrow bandwidth to avoid pulse broadening
(∼ GHz). Narrow filtering is usually not an option because it radically reduces
the flux. However, longer crystals will produce narrower bandwidth at the same
time as the photon flux is increased, as we showed in Paper C. This is valid also
when the emission is coupled into fibers, as long as the focusing stays optimal. An
even narrower bandwidth is needed to address atoms (∼ MHz), which does not
seem unforeseeable. It can be said that we have found no other similar work in the
context of QPM.

Concerning the source’s ability to produce entanglement, we have reported re-
sults in Paper B using two crystals to generate photons of two orthogonal polar-
izations. The output state is entangled in polarization, but due to that polarization
is typically randomized along an optical fiber, we cast the polarization in the form
of time encoding instead. One problem we came across was chromatic dispersion



87

in the crystals, due to the strongly non-degenerate wavelengths in a two-crystal
configuration. The effect could be canceled by an extra piece of crystal. Our in-
vestigation on this special type of chromatic dispersion is the first we can find in
the literature. Due to imperfections of the compensation the dispersion naturally
leads to a small but noticeable residual degradation in the quality of entanglement.
It would be preferable if Nature itself could take care of that process using de-
coherence free subspaces. Such states could be created by another type of phase
matching process, Z → Z + X, but if the dispersion effect is weak enough to be
canceled that way, is something which we have yet to find out.

A few other words could be said about the future development of sources of en-
tanglement in general. Many sources today still use very powerful and bulky lasers
to pump the crystals, in some cases because it’s the only type of laser that can de-
liver very short and high energy pulses, but in many cases also because wavelengths
around 700-800 nm are aimed at for the photon pairs. However, blue laser diodes at
400 nm of sufficient power and mode-quality are becoming available, which means
that polarization entanglement around 800 nm can be efficiently created in much
more portable systems than before. It is also interesting to take note on progress of
making intra-cavity parametric down-conversion inside laser diodes for the genera-
tion of photon pairs [Rossi et al., 2004]. Such a structure would create entangled
photons with much the same ease as a laser work.

Turning to applications, it is a near-term goal for our source of non-degenerate
hybrid encoded entangled photon pairs in Paper B to be used in its current form
for a demonstration of long-distance quantum key distribution. Using ideas from
the quantum cryptography system developed in Paper F, which was the world’s
first demonstration of “plug and play” QKD at the 1550 nm telecom wavelength,
it is also interesting to think of a variant to the scheme. Instead of Bob measuring
his photon with an interferometer, the idea would be to directly reflect back his
time-coded qubit using a Faraday mirror similar to the “plug and play” system,
effectively realizing a long but very stable interferometer with Alice’s side. Alice
keep polarization coding on her qubit. In a coding scheme that reminds of dense
coding, Bob, upon receiving his qubit of the pair, will change the phase of the
qubit according to four possible phase-shifts. As the photonic qubit comes back
to Alice, it carries two bits of information in two non-orthogonal bases, which
then automatically is reconverted to polarization coding in the same device which
transformed polarization to time in the first place. The entanglement of both
qubits are then analyzed by Alice, who also checks for any eavesdropping, all in
polarization. The nice feature of the scheme would be the combination of time-
coding, entanglement, and a single self-stabilizing interferometer. The obvious
disadvantage is that Bob’s single photon needs to travel twice over the fiber.

At present, the maximum distance for doing quantum communication is less
than 100 km because of the exponential decrease in bit rate with increasing dis-
tance. To reach longer distances quantum repeaters will inevitable be needed. One
can reduce the probability of losing a photon, and hence limit the impact of detector
dark-counts, and quantum bit error rates that sets the maximum secure distance,
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by dividing the distance into smaller pieces of segments. A quantum repeater will
in turn require the implementation of error correction, quantum interfaces, entan-
glement purification, and quantum memories — individual parts which today form
a major experimental challenge on a 10 year time scale. In all parts, entanglement
plays a fundamental role. A quantum repeater consists of many quantum relays,
each measuring the relative correlations between two entangled states, and recre-
ating new entangled states. Our ideas in Paper E for using a trusted third player
and entanglement for authentication, could very well be used in this context for
the implementation of a quantum repeater, where the relay station works as an
authoritative site. In a quantum relay, a quantum memory is an essential compo-
nent when two relays need to wait for each other until both hold entanglement.
Some proposals for memories include Rubidium atoms, which respond to photons
of a wavelength of typically 800 nm, making our non-degenerate source suitable
as an interface to the 1550 nm photons that travel over the fibers. A quantum
repeater require many different kinds of implementations of quantum systems to
come together in a joint structure, making it a very challenging piece of work, as
if the individual parts were not enough challenging. Nevertheless, its a very active
field of research.

It is not an understatement to say that working with single photons to distribute
information is a highly inefficient business. The efficiency with which we can detect
a single photon is fairly low, 10− 60%, the loss in optical fibers after 15 km is 50%,
the flux of qubits is at most a few hundred kHz, the probability for a logical quantum
gate to succeed is typically 6− 25%, the bit rate in quantum cryptography systems
is at best a few hundred bits per second, and the quantum bit error rate about
1 − 10%. These numbers should be compared to classical communication systems
that are now working in terabit per second, with typical error probabilities of 10−12,
and CMOS-gate failure probabilities of 10−8 in ordinary processors. Nevertheless,
as we have seen, the quantum world can offer is something entirely different from
the classical, which makes such a comparison less interesting.

As anyone can observe, technology of the 20th century was dominated by the
discovery of electromagnetism in the 19th century. Having recently entered a new
millennium, we all witnessed the birth of information technology as a result of Shan-
non’s information theory some 60 years ago. Logically, what can only be expected
of the 21st century is that the discoveries of quantum theory and information theory
of the 20th century merges and leaves footprints. In addition, it should be noted
that similar to Moore’s law in the semiconductor industry, the ever increasing bit
rate in optical communication will inevitable lead to the single photon level. As
the power per bit has to get lower to crank up the speed, and avoid overheating
the systems, we will eventually reach the quantum domain at some point. At this
point, presumably the quantum industry1 is ready to take over.

1Regarding the future of quantum communication in political terms, it is quite clear that
governments, like for example the EU, thinks it’s becoming an important technology worth invest-
ments. In a global effort towards “Development of a Global Network for Secure Communication
based on Quantum Cryptography” the EU is spending 11 million Euro in 4 years.



Appendix A

A comparison of photon sources

The table on the next page shows a detailed comparison of sources of photon-
pairs based on results reported in the literature. All but one of the sources utilize
nonlinear crystals to generate either entangled or unentangled photons-pairs. The
meaning of some of the parameters are discussed in Section 3.6 and 4.3. Some num-
bers have been rederived using available data in order to make a fair comparison.
We regret any errors that may have occurred in the process. Additional information
regarding the content in the columns follows:

phasematching wavelengths of the pump, signal and idler, and type of
entanglement

crystal type and length of nonlinear crystal

spatial mode SM: single-mode fiber; MM: multimode fiber; and free-
space

detec. sing. rs: detected rate of singles (signal)

detec. coin. rc: detected rate of coincidences

true corr. Rc: rate of correlated pairs in either the fiber or in free-
space, compensated for the detection efficiency

detected coin./sing. rc/rs: fraction of detected correlated pairs to singles
(µ = rc/rsηi for heralded sources)

visibility V : visibility of second-order correlation (entanglement)

prod. rate Rprod
c : number of true correlated pairs per second, THz

bandwidth of emission, and pump power in mW

CHSH-violation S: degree of violation of the CHSH-inequality
[Clauser et al., 1969] (S ≤ 2.82)

speed of CHSH-viol. the number of standard deviations σS by which S is
violated per

√
s
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group/publication phasematching

[nm]

crystal

[mm]

laser/
power

[mW]

detectors
(det. eff.)

spatial
mode

filters
FWHM

[nm]

detec.
sing.

rs [s−1]

detec.
coin.

rc [s−1]

true
corr.

Rc [s−1]

detected
coin./
sing.

rc/rs

visibi-
lity

[%]

prod.
rate
[s−1

THz−1

mW−1]

CHSH-
violation
(time to
measure
R±±)

speed
of
CHSH-
viol.
[s−1/2]

Aspect, Grangier, and Roger,
Phys. Rev. Lett. 49, 91 (1982)

551 and 423
Polarization

Calcium-40
atoms

- Photomult. - - 10000 40 - 0.004 - 2.679± 0.015
(500 sec.)

3.1

Kiess, Shih, Sergienko, and Alley,
Phys. Rev. Lett. 71, 3893 (1993)

351.1 → 702 + 702
Post-selected
Type-II

BBO
0.5 mm

150 ? Si APD
(η ≈ 60%?)

1 nm 8.3 23 0.25

Tapster, Rarity, Owens,
Phys. Rev. Lett. 73, 1923 (1994)

501.7→ 820 + 1300
Post-selected?
Type-II?

LiIO3
20 mm

Ar+ Si APD
η ≈ 60%?
Ge APD
(η ≈ 10%?)

SM
4.3km

9.5 nm
RG850

80000 1500 25000 ? 0.02
(µ = 20%)

86.9 2.458± 0.015
(6 sec.)

13

Kwiat, Mattle, Weinfurter,
Zeilinger, Sergienko, and Shih,
Phys. Rev. Lett. 75, 4337 (1995)

351.1 → 702 + 702
Direct Polarization
Type-II

BBO
3 mm

Ar+

150
Si APD
(η ≈ 60%?)

Free
space

5 nm 1500 4200 ? 97.8 9.2 2.649± 0.006
(18.75 sec.)

18

Tittel, Brendel, Gisin, and
Zbinden,
Phys. Rev. A 59, 4150 (1999)

655 → 1310 + 1310
Post-selected
Energy-time
Type-I

KNbO3 Diode
10

Ge APD
(η ≈ 5%)

SM?
9.3km,
8.1km

70 nm 34000–
39000

186–286 114000 ≈0.007
(µ ≈ 14%)

95.5 932 2.700± 0.028
(30 sec.)

8.4

Kwiat, Waks, White, Appelbaum,
and Eberhard,
Phys. Rev. A 60, R773 (1999)

351.1 → 702 + 702
Direct Polarization
Type-I

2×BBO
8× 8× 0.59

Ar+

150
60

Si APD
(η ≈ 65%)

Free
space 5 nm

10 nm

3500 175
21000
10000

50000
24000

0.05
(µ = 7%)

99.6
110
65 2.701± 0.003

(10 sec.)
50

Jennewein, Simon, Weihs, Wein-
furter, and Zeilinger,
Phys. Rev. Lett. 84, 4729 (2000)

351 → 702 + 702
Direct Polarization
Type-II

BBO Ar+

350
Si APD
(η ≈ 35%?)

SM or
MM?
0.5km

35000 1700 14000 ? 0.05
(µ = 14%)

Tittel, Brendel, Zbinden, and
Gisin,
Phys. Rev. Lett. 84, 4737 (2000)

655 → 1310 + 1310
Post-selected
Time-bin
Type-I

KNbO3
4× 3× 12

Diode
Pulsed
80MHz
1.0

Ge APD
(η ≈ 5%)

SM? ∆l =
20µm
→
86 nm

4000–
7000

17 6800 0.004
(µ = 8%)

92.2 452 2.610± 0.050
(50 sec.)

1.8

Kim, Kulik, and Shih,
Phys. Rev. A 62, 011802 (2000)

400 → 800 + 800
Post-selected
Polarization
Type-I

2×BBO
3.4 mm

Ti:Sapp
Pulsed
80fs
82MHz

Si APD
(η ≈ 60%?)

Free
space

40 nm 400 90

Ribordy, Brendel, Gauthier, Gisin,
and Zbinden,
Phys. Rev. A 63 012309 (2001)

532 → 810 + 1550
Direct Energy-time
Type-I

KNbO3
3× 4× 10

Nd:YAG
100

Si APD
(η = 60%?)
InGaAs
(η = 8.5%)

SM no filter
→ 5 nm
@810
nm

1100000
Si

(65450)

500
(entangled)

(1300000)

9700

(0.06)
(µ = 70%)

91.8

(5500, unentangled!)

42 2.600± 0.045
(2 sec.)

9.4

Kurtsiefer, Oberparleiter, and We-
infurter,
Phys. Rev. A 64, 023802 (2001)

351.1 → 702 + 702
Direct Polarization
Type-II

BBO
2 mm

Ar+

465
400

Si APD
(η = 60%?)

SM 4.6 nm
1300000
420000

360800
90000

1000000 ?
250000 ?

0.28
0.21
(µ < 47%)

H,V 98.2
D,A 96.3

768
223 2.698± 0.003 148

Banaszek, U’Ren, and Walmsley,
Opt. Lett. 26, 1367 (2001)

418 → 848 + 824
QPM

PPKTP
1 mm
Waveguide

Ti:Sapp
Pulsed
22µW

Si APD
(η = 60%?)

Free
space
+
fibertip

6 nm 8150 1400 3900 ? 0.17
(µ = 28%)

(71000, unentangled!)

Tanzilli, De Riedmatten, Tittel,
Zbinden, Baldi, De Micheli, Os-
trowsky, and Gisin,
Electronics Lett. 37, 26 (2001)

657 → 1314 + 1314
QPM

PPLN
32 mm
Waveguide

Laser-
diode
CW
5.2µW

Ge APD
(η ≈ 10%)

SM 30 nm 177000 1550 155000 0.009
(µ = 9%)

(5700000, unentangled!)

Tanzilli, Tittel, De Riedmatten,
Zbinden, Baldi, De Micheli, Os-
trowsky, and Gisin,
Eur. Phys. J. D 18, 155 (2002)

657 → 1314 + 1314
Energy-time
Time-bin
QPM

PPLN
32 mm
Waveguide

Diode
Pulsed
400ps
80MHz
5µW

Ge APD
(η ≈ 10%)

SM 40 nm
750
90

75000
9000

97.0
84.0

2100000 2.744± 0.04 14
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filters
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[s−1/2]

Bitton, Grice, Moreau, and Zhang,
Phys. Rev. A 65, 063805 (2002)

395 → 790 + 790
Direct Polarization
Type-II

2×BBO
1 mm

Ti:Sapp
Pulsed
76MHz
200

Si APD
(η = 60%?)

Free
space

4000 73

Nambu, Usami, Tsuda, Mat-
sumoto, and Nakamura,
Phys. Rev. A 66, 033816 (2002)

266 → 532 + 532
Direct Polarization
Type-I

2×BBO
0.13 mm

Ti:Sapp
Pulsed
100fs
82MHz
150

Photomult.
(η = 40%)

Free
space

8 nm
40 nm

450
2700

2800
17000

92.0
90.0

2.2
1

2.602± 0.020
2.546± 0.009

9
20

Mason, Albota, König, and Wong,
Optics Letters 27, 2115 (2002)

532 → 808 + 1559
Type-I

PPLN
20 mm

Nd:YAG
?
1-2

Si APD
(η = 54%)
InGaAs
(η = 20%)

MM
SM

1.26 nm 7560000
30000
10000
gate

600
200

5500 0.02
(µ = 10%)

(35000, unentangled!)

Fiorentino, Messin, Kuklewicz,
Wong, and Shapiro,
Phys. Rev. A 69 041801, (2004)

399 → 797 + 797
Direct Polarization
Type-II

2×PPKTP
(2 ways)
10 mm

Ti:Sapp
CW
0.7

Si APD
(η = 60%)

Free
space

3 nm 47000 8000 22000 0.18
(µ = 30%)

90.0 22000 2.599± 0.004
(15 sec.?)

38

Trojek, Schmid, Bourennane, and
Weinfurter,
Optics Express 12, 276 (2004)

402.6 → 805 + 805
Direct Polarization
Type-II

BB0
2 mm

Diode
24

Si APD
(η = 36%)

SM 6 nm 27000 5200 40000 0.19
(µ = 50%)

H,V 98.3
D,A 94.3

600 2.732± 0.017
(5 sec)

37

Fasel, Gisin, Ribordy, and
Zbinden,
Eur. Phys. J. D 30, pp. 143-148
(2004)

532 → 814 + 1536
Direct Energy-time
Type-I

KNbO3
3× 4× 10

Nd:YAG
100

Si APD
InGaAs
(η = 10%)

SM
30km

2/6.9
1.45/5.2
(814
nm/
1536
nm)

79000 Si
36000 Si

3900
1800

39500
18000

0.05
0.05
(µ=50%)

89.0
92.0

436
199

Li, Voss, Sharping, and Kumar,
Phys. Rev. Lett. 94, 053601
(2005)

1547 + 1525
Polarization
Type-I

NFSI
(non-linear
fiber)

MIRA-
OPO
Pulsed
75MHz
0.39

InGaAs
(η1 = 25%)
(η2 = 20%)

SM 0.6 nm 4000
3000
(588kHz gate)

50
20

127000
50800

0.01
0.007
(µ < 5%)

93 4300000
1700000 2.750± 0.077 2.4

Altepeter, Jeffrey, and Kwiat,
Optics Exp. 13, 8951 (2005)

351 → 702 + 702
Direct Polarization
Type-I

BBO
2× 0.6 mm

280 Si APD
(η = 65%)

Free
space

25 nm
T = 84%

1000000 3350000 555 2.726± 0.002 513

D. Ljunggren, P. Marsden, M.
Tengner, I. Ghiu, I. Vellekoop and
A. Karlsson,
Paper J (2003)

775 → 1550 + 1550
Postselected
Polarization
Type-II

BBO
12 mm

Ti:Sapp
200 fs
82 GHz
100

InGaAs
(η = 18%)

SM 10/10 7000
(1 MHz gate)

70 2200 0.01 17
1400 (82 MHz gate)

D. Ljunggren, M. Tengner, P.
Marsden, and M. Pelton,
Paper B (2005)

532 → 810 + 1550
Direct Polarization
QPM

2×PPKTP
4.5 mm

Nd:YAG
4.5

Si APD
(η = 60%)
InGaAs
(η = 18%)

SM 2/10
(810/
1550
nm)

100000 2100
(10 ns gate)

19600 0.02
(µ=11%)
(σ=32%)

H,V 99.6
D,A 94.2

4600 2.679± 0.004
(10 sec.)

56

M. Tengner and D. Ljunggren,
Paper A (2005)

532 → 810 + 1550
Direct Polarization
QPM

2×PPKTP
4.5 mm

Nd:YAG
1.2

Si APD
(η = 60%)
InGaAs
(η = 18%)

SM 2
(810
nm)

88000 7200
(10 ns gate)

71000 0.08
(µ=48%)
(σ=77%)

65000
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We report on an asynchronous source of heralded single photons based on spontaneous parametric
downconversion in a periodically poled, bulk KTiOPO4 crystal. The source generates light with
highly non-degenerate wavelengths of 810 nm and 1550 nm, where the 810 nm photons are used to
announce the presence of the 1550 nm ones inside a single-mode optical fiber. We make a thorough
analysis of how factors such as gate-period, photon rates, coupling efficiencies, and system losses
affect the performance of the source. For our setup we find the probability of having a 1550 nm
photon present at the output of the single-mode fiber, as announced by the 810 nm photon, to be
48%. The probability of multiphoton events is strongly suppressed compared to a poissonian light
source giving highly sub-Poisson photon statistics.

PACS numbers: 03.67.Hk, 42.50.Ar, 42.50.Dv, 42.65.Lm

I. INTRODUCTION

Sources of single photons have become fundamentally
important in all areas of quantum information processing
dealing with photonic qubits, for example linear optics
quantum computing and quantum communication. Con-
sequently, many types of single photon sources have been
developed, like molecule or atom emission [1, 2], nitro-
gen vacancies in diamond [3, 4], quantum dots [5, 6], etc.,
all having different properties like repetition rate, single-
photon probability, and emission frequency. A promis-
ing alternative is so-called heralded single-photon sources
(HSPS) [7–12], where photon pairs produced by sponta-
neous parametric downconversion (SPDC) are used to
prepare conditional single photons [13]. One special
property of single-photon sources, essential to most appli-
cations, is that the single photons are prepared in a well
defined mode both temporally and spatially. In contrast
to most other sources, HSPS have shown to successfully
meet the latter requirement by optimizing the coupling
into single-mode fibers [14–16]. However, it still leaves
room for improvements on the statistics of the photon
distributions in time, referred to as the temporal mode.
Moreover, HSPS also provide a great flexibility in the
choice of frequency for the single photons.

The basic idea of HSPS can be simply stated as having
the detection event of one of the single-photons of a pair
announcing the presence of its partner. The name “her-
alded” originates from the fact that the single-photons
are not created on demand but rather announced by an
external electric signal. In the realization presented here,
this signal is not synchronous due to the use of a con-
tinuous wave (CW) pump laser for the SPDC process,
therefore the source is called asynchronous.

∗Corresponding author. Electronic address: mariate@imit.kth.se;

URL: http://www.quantum.se

HSPS have been successfully implemented using a
short-pulsed pump laser to get synchronous pulses con-
taining single photons. Hereby one can avoid empty
pulses to a high degree, a problem when using attenu-
ated pulsed lasers as single-photon sources. In essence,
the temporal statistics of the photons is controlled by
utilizing apriori information. However, as long as the
coherence time of the emission, ∆tc, is longer than the
duration of the pump pulse, a single process of stimu-
lated emission will take place [17] giving a thermal pho-
ton number distribution for the source [18]. This causes
bunching effects, meaning that more than one photon
is present. Such a property is unwanted and therefore
pulsed pump lasers are not ideal to use. Along these ar-
guments, the alternative is to use a CW laser as pump
with a relatively long coherence length. In this case, as
long as ∆tc is much shorter than the gate-period of the
detector, there will be an incoherent collection of a large
number of coherent SPDC processes present, each ther-
mally distributed in photon number, but collectively giv-
ing a Poisson distribution [17, 19].

In this paper, we will show how it is advantageous in
these respects to use CW light over pulsed light to herald
the presence of single photons. By making temporal se-
lection through conditional (heralded) gating to photon
pairs output from a continuously pumped SPDC process,
we can modify the photon number statistics even further
than with pulsed light. By determining the autocorre-
lation g(2)(0) we can show either bunching, poissonian,
or antibunching behavior depending on the chosen gate-
period of the detector. In addition to lowering the prob-
ability of empty gates, the probability for higher photon
numbers occupying a gate, can now also be decreased by
using a shorter gate-period, as opposed to with pulsed
light.

Following this analysis, we report the results of a
source of heralded single-photons created by a quasi-
phase-matched nonlinear crystal made of periodically
poled KTiOPO4 (PPKTP). The heralded photons have
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FIG. 1: Outline of a heralded single photon source. The auto-
correlation function g(2)(τ) can be measured using a Hanbury-
Brown and Twiss detection scheme using two detectors, or
g(2)(0) can be measured by a single detector when assuming
a Poisson distribution in photon flux. DM: dichroic mirror;
BS: beamsplitter.

a wavelength of 1550 nm, which makes them suitable
for transmission in optical telecommunication fibers. To
characterize the source we use the second-order autocor-
relation function, which we derive formulas for in terms
of singles rates, coincidence rates, and coupling param-
eters, assuming that the original photon distribution is
poissonian. In this way we are able to determine the au-
tocorrelation function at zero time-delay without needing
to perform a Hanbury-Brown and Twiss correlation ex-
periment [20], which is a non-straight forward task for a
heralded and gated source [8].

The paper is organized as follows. In Sec. II we take a
theoretical viewpoint and investigate the prospects for
generating heralded single photons using the photon-
pairs created by a CW laser in a nonlinear crystal. In
Sec. III we describe the principal setup of the source and
define the coupling parameters. We also show how these
parameters are connected to the detected and derived
photon rates. Section IV discusses the autocorrelation
function and other measures to quantify the source in
terms of system parameters. The result of the experi-
ment is presented in Sec. V, and we round off with some
conclusions and discussion in Sec. VI.

II. THEORY

The basic principle of the source is depicted in Fig. 1.
Using different wavelengths of the trigger photon and
the heralded photon the two are separated by a dichroic
mirror. The trigger photon (signal) hits a detector and
sends a signal to open the detector for the heralded pho-
ton (idler). Even for an ideal system, there will be a
finite probability for more than a single photon to ar-
rive within the gate-period of the detector—a behavior
which can be characterized by the second-order auto-
correlation function g(2)(t1, t2). (In this section we as-
sume perfect detectors). The function can be found by
a Hanbury-Brown and Twiss experiment [20] measuring

the second-order cross correlation function using two de-
tectors behind a beamsplitter, see Fig. 1. The true and
continuous autocorrelation function is found in the limit
of infinitely short detector gate-periods, ∆tgate → 0, for
different time-delays τ = t1 − t2, assuming stationary
light. In terms of probabilities of photon counts, the au-
tocorrelation function is given by

g(2)(τ) =
2Pm≥2(τ)

P 2
m≥1(τ)

. (1)

where Pm≥k is the probability to find k or more photons
within the detector gate-period. The factor 2 in Eq. (1)
origins from the fact that the probabilities are normalized
to attain the maximum value of unity, which is not the
case for g(2)(τ) written in the standard form using the
intensity of the light. (As the process we are dealing
with is ergodic we are allowed to measure time averages
instead of ensemble averages to find g(2)(τ) ).

Using a single detector, D1, it is clear that as τ → 0,
the probability for a photon in the idler will be large con-
ditioned on a photon in the signal, and that the proba-
bility of an empty gate is very small, or even zero, if the
probability that the idler photon makes it from the source
to the detector is unity. If also the gate-period, ∆tgate, is
made short, the probability of two or more photon within
that gate becomes small as a result of the Poisson dis-
tribution in the number of photon arriving (as opposed
to the case using a pulsed pump laser with thermal dis-
tribution). Hence, by gating in the temporal mode we
hereby sub-select events to effectively change the origi-
nal statistics. To quantify, we are thus interested in the
autocorrelation function of the idler for τ = 0,

g(2)(0) =
2Pm≥2

P 2
m≥1

. (2)

It is a well known fact that for g(2)(0) < 1 and
g(2)(τ 6= 0) > g(2)(0) we have antibunching, hence
sub-Poisson statistics, and for g(2)(0) > 1 and
g(2)(τ 6= 0) < g(2)(0) we have bunching, hence super-
Poisson statistics.

We would like to characterize our source using this
quantity, which is zero for perfect antibunching. Thus,
we need to know the probabilities Pm≥2 and Pm≥1,
which can be determined by assuming that the origi-
nal distribution is Poisson (a valid assumption as long
as ∆tc ¿ ∆tgate), and by measuring the mean accidental
photon number per gate-period, b = ∆tgateR̄, where R̄
is the singles rate of photons in counts per second. The
probability for at least k photons to be present in the
gate is given by

Pm≥k = 1 − (1 − P corP acc
n≥k−1)(1 − P acc

n≥k)) (3)

where P cor is the probability that the “true” twin photon
is present, and P acc

n≥k is the probability that k accidental
photons are present. The former probability is unity for
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FIG. 2: (Color online) The value of the second-order autocor-
relation function g2(τ) at τ = 0, showing the effects of anti-
bunching or bunching depending on the detector gate-period
and average photon rate for heralded single photons (solid
blue line), where b = ∆tgateR̄ and P cor = 1. The dashed
green line represents the statistics achieved for a poissonian
source gated at random. The dash-dotted red line shows an
approximation to the solid line for small b, using Eq. (5).

a perfect system, and the latter probability is given by

P acc
n≥k = 1 −

k−1
∑

j=0

e−bbj

j!
(4)

Note that in Eq. (2) we do not care if we herald a truly
correlated pair, or an accidental, which can happen for
lower than unity coupling efficiencies and transmission
factors into the fibers. In Fig. 2 we have plotted Eq. (2)
for different values of b. It is clear that the sub-selected
statistics can show either antibunching or bunching. The
statistics is poissonian for an intermediate value b = 0.57
for P cor = 1, and b = 0.42 for P cor = 0.5, given as two
examples. Sufficiently large values of b will always give
bunched light in the sense that there will always be more
than one photon present within the gate-period. For two
uncorrelated events that are each Poisson distributed, the
g(2)(0) value follows instead the dashed line implying that
such a source remains poissonian for short gate-periods
or low photon flux, as opposed to a HSPS. Similarly,
a thermal distribution due to pulsed light will remain
super-poissonian. The expression for g(2)(0) for a CW
pumped HSPS becomes a little unhandy, but can be ap-
proximated by

g(2)(0) ≈ 2[1 − e−b], (5)

which is valid for small b as shown by the dash-dotted
line in the graph. For an ideal single photon source, the
overall mean photon number 〈n〉 = b+P cor, equals unity,
which means that b = 0 and P cor = 1. In addition, the
variance 〈∆n2〉 of the mean photon number should be

zero, as quantified by g(2)(0) = 1 + 〈∆n2〉−〈n〉
〈n〉2 .

γs

γi

Ωp = 1

∆λnarrow ∆λwide

γc

µs|iµi|s

FIG. 3: A Venn diagram illustrating the single coupling ef-
ficiencies γs and γi, pair coupling γc and conditional coin-
cidences µs|i and µi|s. The total amount of pairs within the
filter bandwidth ∆λ is denoted Ωp and is normalized to unity.

Moreover, the probability for getting exactly n pho-
tons within the gate can also be expressed by the above
probabilities as

P (n) = Pm≥1 −

n−1
∑

k=1

P (k) − Pm≥n+1. (6)

The probability P (1) equals the parameter µher com-
monly used to characterize sources of single photons, i.e.
the probability that exactly single photon is heralded (ig-
noring if its a twin or an accidental for a non-perfect
system).

III. COUPLING EFFICIENCIES AND PHOTON

RATES

There are several different coupling efficiencies of in-
terest in photon-pair sources. In this section we will de-
fine them and discuss their mutual relations in detail.
For a schematic illustration of the different quantities see
Fig. 3. All the coupling efficiencies are related to the
bandwidth ∆λ of the light. The motivation for this is
that the emission from SPDC has in general a very wide
bandwidth that is preferably filtered before detection, ei-
ther by bandpass filters ∆λBP or by the spectral filter-
ing performed by the single-mode fibers ∆λSM, such that
∆λ ≤ min(∆λBP,∆λSM). The single-mode filtering is an
effect of the correlation between each wavevector’s spa-
tial direction and frequency as determined by the phase-
matching in the SPDC process. By normalizing to the
bandwidth of interest we solely investigate how well pho-
tons within that bandwidth are collected into the fibers.
Hence, as a natural consequence, with no spatial filtering
the “coupling” is perfect, as e.g. in the case of a free-
space detector or a multimode fiber (essentially), with a
frequency filter in front.

With this in mind we denote the total number of
photon-pairs generated within a given bandwidth ∆λ,
with Ωp and normalize it to 1. This set will of course
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differ in size in the sense of absolute numbers of photon
pairs, depending on the bandwidth of the chosen filter.
The single coupling efficiencies for the signal, γs, and
idler, γi, are the fraction of Ωp that is coupled into the
single-mode fibers, i.e. the probability to have a photon in
the fiber which was emitted within the filter bandwidth
∆λ. A high single coupling efficiency give a high pho-
ton rate, but do not guarantee a good quality heralded
single-photon source. For that, a high pair coupling ef-

ficiency γc, and high conditional coincidences µs|i and
µi|s are required. The pair coupling efficiency states the
amount of pairs where both photons are coupled into the
two fibers, i.e. how large an overlap there is between the
sets γs and γi in Fig. 3. It is important to note that in
general γc 6= γsγi , and instead of only optimizing the
single coupling efficiencies it is crucial to maximize the
overlap, i.e. to strive to couple the matching modes of the
signal and idler into the fibers, in order to obtain a high
pair coupling efficiency [15]. The conditional coincidence
is the probability to have a photon in the fiber given that
the partner photon of the pair is in its fiber.

All of these coupling efficiencies can be determined
from the measured photon rates and parameters of the
experimental setup such as losses and detector efficien-
cies. Referring to Fig. 4 we denote the total generated
photon pair rate within the given bandwidth ∆λ just
after the crystal Rp. The photon rates inside the single-
mode fibers are Rs and Ri for the signal and idler respec-
tively. They are related to the single coupling efficiencies
by

γs =
Rs

ζδsRp
, γi =

Ri

δiRp
, (7)

where δs and δi are the total transmission factors for the
signal and idler, stretching from the crystal to the detec-
tors including all components such as filter transmission
and reflection losses. Thus, δs = δi = 1 corresponds to an
ideal system with no losses present other than from the
fiber coupling. By weighting the coupling efficiencies by
the transmission we obtain measures that solely describe
how well the coupling into the fibers is performed. The
factor ζ ≤ 1 compensates for the possible unmatched
bandwidths of the interference filters of the signal and
idler. When ζ = 1 the filter bandwidths match (the
relation between signal and idler for our choice of wave-
lengths is ∆λiζ ≈ 3.66 × ∆λs) while ζ < 1 represents a
narrower filter used for the signal than for the idler.

At the end of the fibers we have single photon detec-
tors with quantum efficiencies ηs and ηi. The signal de-
tector measure the single photon rate rs. These detec-
tions serve as the heralding signal to the other detector,
however it is routed via a delay/pulse generator which
in turn provide the gate-pulse for the idler detector. We
call the gate-pulse rate the heralding rate, denoted R0.
This signal announces the presence of the heralded single
photon. In principle R0 should equal rs but in practice
R0 is lower because of the dead-time of the delay/pulse
generator. The pulse gates the idler detector for a time

γs

rs

R0
rs

ηs

rc, ri

Ri

Rs

Rc

ζ

δs

δiPPKTP

ηiγiRp

FIG. 4: Schematics of the experimental setup showing photon
rates and relevant parameters. Rp: rate of generated pairs; γs

and γi: single coupling efficiencies for signal and idler; δs and
δi: total transmissions from crystal to detectors; Rs and Ri:
total photon rates inside the fibers; ζ: compensating factor
for unmatched filters between signal and idler; Rc: rate of
correlated pairs in the fibers; ηs and ηi: detector efficiencies;
rs: detected photon rate for the signal; R0: heralding rate
from delay generator; rc: detected coincidence rate; ri: rate
of accidental coincidences.

∆tgate during which the idler photon is expected to arrive
at the detector. From the idler detector we then obtain
the measured heralded coincidence photon rate rc. We
also measure the accidental rate ri at the idler detector,
i.e. the single photon rate at random gating, to provide
the mean accidental photon number in the Poisson distri-
bution used later on. Also dark count rates rd

s and rd
i are

measured for the two detectors, while after-pulsing effects
are removed by an electrical hold-off circuit (10 µs).

In order to determine Rp the photon rate rp for the
signal is measured using a multi-mode fiber. Rp is then
found as

Rp =
rpαcorr

p − rd
s

ηsζδs
, (8)

where αcorr
p is the correction factor at rate rp for the sig-

nal detector, compensating the detected rate for the pois-
sonian distribution of the arrivals of the photons. The
photon rate for the signal inside the single-mode fiber,
Rs, is obtained in a similar way

Rs =
rsα

corr
s − rd

s

ηs
. (9)

The idler fiber photon rate, Ri, is calculated from the
measured rate of accidental coincidences ri, i.e. the rate
when the idler detector is randomly gated, using ri =
R0P

acc
click, where

P acc
click = 1 − (1 − Plight)(1 − Pdark), (10)

is the probability of a detector-click during one gate
caused by light or dark count probabilities. Assum-
ing a Poisson photon statistics within the gate, justi-
fied by a gate-period ∆tgate much larger than the co-
herence time ∆tc of the downconverted light, we have
Plight = 1− exp (−ηi∆tgateRi) and Pdark = ∆tgater

d
i /R0,
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leading to

Ri =
1

ηi∆tgate
ln

(

1 − rd
i /R0

1 − ri/R0

)

. (11)

The pair coupling efficiency γc is defined via the rate of
correlated pairs inside the fibers Rc. This rate describes
the amount of Rp where both the photons of a pair have
coupled into their respective fiber, giving

γc =
Rc

ζδsδiRp
. (12)

The correlated pair rate Rc is determined from the mea-
sured coincidence count rate rc = R0P

cor
click, where

P cor
click = 1 − (1 − P cor

light)(1 − Pdark)(1 − P acc
light), (13)

once again is the probability of a detector-click dur-
ing one gate, with P cor

light = ηiRc/Rs as the probabil-
ity to detect the “true” twin photon, and P acc

light = 1 −

exp [−ηi∆tgate(Ri − RcR0/Rs)] as the probability to de-
tect an accidental photon. The last minus term in the
exponential exclude those events which are counted as
true coincidences. In terms of photon rates we obtain an
implicit expression for Rc,

rc

R0
= 1 −

(

1 − ηi
Rc

Rs

) (

1 −
rd
i

R0

)

e−ηi∆tgate(Ri−RcR0/Rs),

(14)
which can be solved numerically.

Having determined all the photon rates, we can cal-
culate the different coupling efficiencies from Eq. (7),
Eq. (12), and

µi|s =
Rc

Rs
, µs|i =

Rc

Ri
, (15)

altogether describing how well optimized the fiber cou-
pling is actually done in the experiment. Note that the
conditional coincidences in Eq. (15) are the probabili-
ties of having the “true” twin photon present, a property
important when using downconversion sources to create
entanglement. For a HSPS however, the significant quan-
tity is µher = P (1); the probability to herald exactly one
photon, determined by Eq. (6). This procedure to de-
termine rates and coupling efficiencies is not only rele-
vant for heralded single-photon sources, but is applica-
ble to other fiber-coupled downconversion sources as well
[15, 21].

IV. HERALDED SINGLE- AND

MULTI-PHOTON PROBABILITIES

As discussed in Sec. II, the characterizing quantities
for a heralded single-photon source are the probabilities
of the photon statistics. We will in this section relate
these probabilities to the various photon rates and cou-
pling efficiencies presented in Sec. III.

To obtain the g(2)(0)-value for the source we need to
determine the probabilities Pm≥1 and Pm≥2 according
to Eq. (2). Expressed in terms of photon rates these
probabilities are found to be

Pm≥1 = 1 −

(

1 −
Rc

Rs

)

e−b, (16)

Pm≥2 = 1 −

(

1 −
Rc

Rs

(

1 − e−b
)

)

(1 + b) e−b, (17)

where b = ∆tgate(Ri −RcR0/Rs). Inserting this into the

expression for g(2)(0), Eq. (2), we obtain

g(2)(0) =
2
[

1 −
(

1 − Rc

Rs

(

1 − e−b
)

)

(1 + b) e−b
]

[

1 −
(

1 − Rc

Rs

)

e−b
]2 . (18)

A good approximation for small b is as seen in Fig. 2

g(2)(0) ≈ 2(1 − e−bRs/Rc) ≈
2bRs

Rc
, (19)

for a non-ideal source with P cor = Rc/Rs, in contrast to
Eq. (5), for which P cor = 1. Rewriting g(2)(0) using the
coupling efficiencies in Eq. (7) and Eq. (12) we get

g(2)(0) ≈ 2∆tgate

(

γsγi

γc
Rp − R0

)

. (20)

For a ideal antibunched source g(2)(0) = 0, so we want
the value as small as possible. As seen from Eq. (20),
g(2)(0) can always be made smaller by decreasing the
number of generated photon pairs Rp, i.e. by simply by
lowering the pump power. However, for a single photon
source to be useful for applications, high photon rates are
in general desirable, so this does not seem like a sensible
way to improve the performance of the source. We also
conclude that a decrease of the single coupling efficien-
cies, γs and γi, and an increase of the pair coupling, γc,
both lower g(2)(0). Since γc = min (γs, γi) the optimal
is to have all three equal, but also as small as possi-
ble. Again however, this leads to undesirably low photon
rates. Decreasing the gate-period ∆tgate is also a possi-
bility, and this seems like a more natural way to enhance
the performance, since it essentially does not affect the
photon rates. Yet, ∆tgate must still be kept much longer
than the coherence time of the downconverted photons
in order to maintain the Poisson photon statistics.

Using Eq. (6), Eq. (16) and Eq. (17) we find the ex-
pression for µher = P (1) to be

µher =

(

1 −
Rc

Rs

)

be−b +
Rc

Rs
(1 + b)e−2b. (21)

V. EXPERIMENTAL RESULTS

The experimental setup of the source is shown in Fig. 5.
A CW laser at a wavelength of 532 nm pumps a 4.5 mm
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FIG. 5: The experimental setup of the heralded single photon
source. PBS: polarizing beam splitter; HWP: half wave plate,
QWP: quarter wave plate; BP: band pass filter; SMF: single-
mode fiber.

long periodically poled potassium titanyl phosphate (PP-
KTP) bulk crystal. The crystal is poled with a period of
9.6 µm to assure collinear phase-matching for a signal and
idler at 810 nm and 1550 nm, respectively. The pump’s
polarization is controlled by a polarizing beam splitter,
a half wave plate, and a quarter wave plate, before fo-
cusing the light onto the crystal with an achromatic dou-
blet (fp = 50 mm). Directly after the crystal the pump
light is blocked by a bandstop filter. The signal and idler
emission is refocused by an achromatic doublet (fsi = 30
mm) before split by a dichroic mirror, then collimated
by two additional lenses (fs = 60 mm, fi = 40 mm),
and finally focused into single-mode fiber by aspherical
lenses (f = 11 mm) following predictions in [15]. In
front of the signal fiber-coupler a Schott-RG715 filter is
placed to block any remaining pump light, together with
an interference filter at 2 nm (FWHM). For the idler it
suffice a Schott-RG1000 filter to block the last residue of
the pump, giving an estimated single-mode bandwidth
of 15 nm (FWHM) for the accidental photons and 7 nm
(FWHM) for the coincidence photons. The detectors
used are a Si-based APD (PerkinElmer SPCM-AQR-14)
for the 810 nm light with a quantum efficiency ηs = 60%,
and a homemade InGaAs-APD (Epitaxx) module for the
1550 nm light with ηi = 18%. The detection of a 810 nm
photon triggers the digital delay generator (DG535 from
SRS), which, in turn, generates a gate-pulse for the 1550
nm detector.

We measured the singles- and coincidence photon rates
for different pump powers by varying the power using
neutral density filters. As expected, both singles, coin-
cidences, and accidental counts increase with the pump
power, see Fig. 6. The pump power 1.2 mW was chosen
for the subsequent measurements. Histograms of the co-
incidence rate for different delays of the gate-signal can
be seen in Fig. 7. The gate delay was moved within a
12 ns window for the two cases of gate-periods, ∆tgate,
of 2 ns and 4 ns. We can observe that the coincidences
are well localized in time for both cases. The total num-
ber of coincidences are lower for the 2 ns gate-period than
for the 4 ns gate-period due to the limited rise time of
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FIG. 6: (Color online) The singles rate of signal and idler,
both in free-running mode (left axis). The idler’s rate in
counts per second is derived from randomly gated mode, with
a gate-period ∆tgate = 10 ns, at a rate R0. The right axis
shows the total gated coincidence rate rc and the derived ac-
cidental coincidence rate ra.

the gate-pulse, and a lower excess gate voltage for shorter
gate-periods, causing a drop in the detector quantum ef-
ficiency.

We have optimized the fiber coupling with the goal
of obtaining an as high conditional coincidence as pos-
sible, which did not correspond to the highest possible
single coupling efficiencies. The resulting detected sin-
gle counts rate for the signal was rp = 218 × 103 s−1

with the multi-mode fiber, and rs = 88 × 103 s−1 with
the single-mode fiber. The latter rate resulted in a gate-
rate R0 = 81 × 103 s−1, and a detected coincidence rate
rc = 7200 s−1 for a gate-period ∆tgate = 10 ns. Acciden-
tal coincidences, i.e. coincidences measured with random
gating, was ri = 130 s−1. The dark count for the sig-
nal detector was rd

s = 90 s−1 and for the idler detector
rd
i = 40 s−1 at gate-rate R0. The overall transmission

factors in the signal and idler arm were δs = 54% and
δi = 63%, as determined by sending strong laser light
at the corresponding frequency through the setup and
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FIG. 7: The rate of gated coincidences, rc for different delays
of the gate-signal at a gate-rate R0 = 65×103 s−1. The gate-
period, ∆tgate, was in the left histogram 2 ns and in the right
4 ns.
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FIG. 8: The probability distribution, P (n), of the idler pho-
ton number, n, as a result of gating the idler conditioned
upon detection of a signal photon. The numbers are the
results of an experiment at a pump power, Pp = 1.2 mW,
average photon-rate R̄ = 1270 × 103 s−1, and gate-rate
R0 = 81 × 103 s−1.

measuring the loss. The 2 nm interference filter for the
signal and no interference filter for the idler give ζ = 0.5.
With these measured photon rates and setup parameters
the actual photon rates were calculated using the expres-
sions in Sec. III, obtaining a generated photon-pair rate
Rp = 1340×103 s−1, photon rates inside the single-mode
fibers Rs = 147 × 103 s−1, and Ri = 615 × 103 s−1, and
correlated pair rate inside the fibers Rc = 71 × 103 s−1.
This resulted in single coupling efficiencies γs = 40% and
γi = 71%, pair coupling efficiency γc = 31%, and condi-
tional coincidences µi|s = 48% and µs|i = 12%.

With the calculated photon rates the heralded pho-
ton statistics was determined, see Fig. 8. The prob-
ability to have zero photons present within the gate-
period was P (0) = 0.514, and the probability to have
exactly one photon present was µher = P (1) = 0.483.
The probabilities for higher number of photons drop off
rapidly, with Pm≥1 = 0.486, and Pm≥2 = 0.0028, giv-

ing g(2)(0) = 0.0235. For the different pump powers in
Fig. 6, g(2)(0) was also calculated, showing to grow lin-
early with pump power via the b parameter, see Fig. 9,
all in agreement with Eq. (20).

VI. CONCLUSIONS AND DISCUSSION

In this article we have made an analysis of an asyn-
chronous heralded single-photon source in terms of pho-
ton rates, gate-periods, coupling efficiencies etc. We have
determined the photon number statistics and found it to
be highly sub-poissonian. We have also calculated the
autocorrelation g(2)(τ = 0), and concluded that it is not
a fully satisfactory measure for HSPS, since it can for ex-
ample be improved by simply lowering the overall photon
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FIG. 9: The autocorrelation g(2)(0) as a function of b =
∆t(Ri−RcR0/Rs) with ∆tgate = 10 ns. The upper line shows
the experimental data where b has been varied by changing
the pump power (0.08, 0.6, 1.5, 3.5, 6, and 10 mW). The lower
line is the theoretical curve with P cor = 1.

rate as also noted by [8]. However, in a different aspect,
we have noted that the autocorrelation at τ = 0 is pro-
portional to the variance of the mean photon number for
a source both with or without losses, turning g(2)(0) into
a rather good measure if related to the mean accidental

photon number b.

If one compare synchronous and asynchronous HSPS,
i.e. sources with pulsed and CW pump lasers, regarding
photon number statistics, there are some distinct differ-
ences. For a short-pulsed source, the SPDC process can
be seen as a single coherent process that creates pho-
ton pairs spread in creation-time not more than the du-
ration of the pump-pulse ∆tp, giving a thermal photon
number statistics for the heralded photons as long as the
coherence time ∆tc > ∆t. This situation is rather eas-
ily achieved by short-pulsed lasers and narrow bandpass
filters for the emission, alternatively, with long down-
conversion crystals to increases the coherence length. If
∆tc < ∆tp but ∆tc > ∆tgate we still have the same
situation, but now with the gate-period as the limiting
factor, selecting photons originating from a single pro-
cess. However, this situation is rather unrealistic using
pulsed lasers, since it requires ∆tgate ¿ ∆tp. If instead
∆tc ¿ ∆tp and ∆tgate, there will be a large collection
of processes, all individually with a thermal distribution,
but collectively giving a Poisson distribution.

For a CW source all the different single SPDC pro-
cesses can in principle be arbitrarily spread over time.
In such a case the gate-period in relation to the coher-
ence time sets the type of distribution in photon number
statistics. Still, for ∆tc > ∆tgate the photons within
the gate can be seen as originating from a single SPDC
process, hence with a thermal photon number statistics.
However, for ∆tc ¿ ∆tgate we have a large collection
of processes collectively providing a Poisson distribution.
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By sub-selecting temporal modes (events) by conditional
gating, using a CW pump, the photon number distribu-
tion can be further altered to show sub-Poisson statistics,
effectively decreasing both the probability of a falsely
heralded single photon, and suppressing the probabil-
ity of multi-photon events. In our experiment there is
still a probability of false announcements of 52%, but in
contrast to attenuated coherent pulses it is primarily of
an experimental challenge to lower the fraction of such
events by increasing the coupling efficiencies or the trans-
mission factors, and not a fundamental problem.
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Theory and experiment of entanglement in a quasi-phase-matched two-crystal source

Daniel Ljunggren,∗ Maria Tengner, Philip Marsden,† and Matthew Pelton‡

Department of Microelectronics and Information Technology,

The Royal Institute of Technology, KTH, Electrum 229, SE-164 40 Kista, Sweden

(Dated: October 8, 2005)

We report new results regarding a source of polarization entangled photon-pairs created by the pro-
cess of spontaneous parametric downconversion in two orthogonally oriented, periodically poled, bulk
KTiOPO4 crystals (PPKTP). The source emits light colinearly at the non-degenerate wavelengths
of 810 nm and 1550 nm, and is optimized for single-mode optical fiber collection and long-distance
quantum communication. The configuration favors long crystals, which promote a high photon-pair
production rate at a narrow bandwidth, together with a high pair-probability in fibers. The quality
of entanglement is limited by chromatic dispersion, which we analyze by determining the output
state. We find that such a decoherence effect is strongly material dependent, providing for long
crystals an upper bound on the visibility of the coincidence fringes of 41% for KTiOPO4, and zero for
LiNbO3. The best obtained raw visibility, when canceling decoherence with an extra piece of crystal,
was 91 ± 0.2%, including background counts. We confirm by a violation of the CHSH-inequality
(S = 2.679 ± 0.004 at 55 s−1/2 standard deviations) and by complete quantum state tomography
that the fibers carry high-quality entangled pairs at a maximum rate of 55 × 103 s−1THz−1mW−1.

PACS numbers: 03.67.Mn, 03.67.Hk, 42.50.Dv, 42.65.Lm

I. INTRODUCTION

A nonlinear medium exposed to an optical field will
occasionally emit several other photons. The pheno-
menon is known as spontaneous parametric downconver-
sion (SPDC), and is frequently utilized for the production
of photon-pairs. Such a pair can also become entangled
in a certain degree of freedom if indistinguishability is en-
sured in all the remaining degrees of freedom. Many suc-
cessful examples of direct creation of entangled photon-
pairs [1–3], post-selected entangled pairs [4–6], and in-
fiber generated pairs [7–9] can be given, already serving
as an indispensable tool for quantum communication.

The source reported here uses two orthogonally ori-
ented crystals, each emitting pairs of photons of a differ-
ent polarization than the other. The different pairs are
made indistinguishable, in our case by single-mode fibers,
and therefore the individual photons of a single pair be-
come directly entangled in polarization — an idea orig-
inally proposed by Hardy [10] and realized in modified
form by Kwiat et al. [11]. One problem with the original
realization is that the crystals cannot be made too long,
since the non-colinearity makes the two emission-cones
non-overlapping. Another problem is that the crystals
used generally emit into many spatial modes, which is not
suitable for fiber-coupling. Using periodically poled crys-
tals via quasi-phase matching [12–14], it has been shown
that colinear emission can be achieved very close to a

∗Corresponding author. Electronic address: daniellj@kth.se;

URL: http://www.quantum.se
†Current address: Department of Physics, University of Toronto,

Toronto M5S 1A7, Canada
‡Current address: Department of Physics, University of Chicago,

Chicago, IL 60637, USA

single mode [15] (even in non-waveguiding structures),
providing much greater overlap in the emission. Such a
configuration also allows non-degenerate wavelengths to
be generated.

Some desirable properties of photon-pair sources to be
used for quantum communication include: i) a high prob-
ability of photon-pairs to be collected into optical fibers;
ii) a minimum number of false coincidences; iii) wave-
length combinations that either suit efficient detection,
match atomic transitions, or are well transmitted over
long distances; iv) a narrow bandwidth that limits the
effects of fiber dispersion (∼ GHz) [16] or can address
atoms (∼ MHz); v) a long coherence length that lim-
its the need for precise interferometry; vi) small jitter
in arrival-time of photons; vii) perfect correlations in all
bases; and, ideally, viii) the source being compact enough
to be put in a box, carried out of the lab, and be used,
e.g., for quantum key distribution (QKD). Furthermore,
for maximum security in QKD a strong requirement is
to have neither more nor less than a single photon per
gate pulse. In this respect, photon-pair sources have been
shown to be good candidates compared to weak coherent
pulses, potentially fulfilling properties i) and ii). Equally
imperative for security in Ekert’s scheme [17] is property
vii), which expresses the wish for high visibility of entan-
glement in the presence of background detection, which
implies the need to minimize dark counts and false coin-
cidence counts.

In this work, we extend our previous results [18] re-
garding a PPKTP-based two-crystal source and try to
address some of the anticipated features above. By emit-
ting at non-degenerate wavelengths, the source exploits
the highly efficient Si-based single-photon counters avail-
able in the near-infrared region and the low attenuation
in fibers at telecom wavelengths. The shorter wavelength
also matches the transmission bands of alkaline atoms,
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FIG. 1: The source consists of two PPKTP crystals placed one
after the other; the first creates a vertically (V) and the second
a horizontally (H) polarized field. The laboratory coordinate
system is drawn, as well as the crystal axes, X, Y , and Z,
which refer to the polarization of the incoming and outgoing
electromagnetic fields.

which makes the source suitable as part of a quantum
memory [19, 20]. For our crystal configuration, we show
how effects like chromatic dispersion enter the picture
as problems to be dealt with. The source has been
optimized for coupling into single-mode fibers following
Ref. [15], where one can also find motivations for us-
ing long crystals to achieve a narrow bandwidth. An
early example of a non-degenerate source is Ref. [21], us-
ing energy-time entanglement. One reason for utilizing
energy-time entanglement is to overcome the strong de-
coherence mechanism of polarization-states over fibers,
and, for the same reason, we propose a scheme that com-
bines time-multiplexed encoding on the telecom wave-
length side [22] with polarization on the near-infrared
side, altogether realizing a sort of hybrid-coded entan-
glement.

The article is organized as follows. In section II, we
describe the main characteristics of the source. In sec-
tion III, we derive the quantum state emitted by the two
crystals in terms of frequency and polarization degrees
of freedom, based on the quantum state of a single crys-
tal derived in the Appendix. Following that, in section
IV, we briefly show how to compensate for the effect of
chromatic dispersion in the crystals, so as to assure indis-
tinguishability, and, in section V, we present our experi-
mental results showing the quality of the source, includ-
ing results on quantum state tomography. In section VI,
we discuss the future directions of a hybrid-coded source,
and we end with a summary in section VII.

II. A SOURCE OF POLARIZATION

ENTANGLEMENT

The source is depicted in Fig. 1, and consists of two
orthogonally aligned bulk crystals placed one after the
other. They each have the dimensions 3 × 4.5 × 1 mm
(X,Y, Z), of which the second dimension defines the
length, L = 4.5 mm. The crystals are made of potassium

titanyl phosphate, KTiOPO4, and are periodical poled
with the period Λ = 9.6 µm, chosen such that we have
phase-matching for the signal at a wavelength of 810 nm,
and the idler at 1550 nm, for a temperature T = 111 ◦C
determined by the Sellmeier equations of KTP [23, 24].
The crystals are pumped by monochromatic and con-
tinuous wave laser light (p) at a wavelength of 532 nm,
which is propagating in a Gaussian TEM00 mode along
the z-axis, producing a signal (s) and idler (i) field in the
same direction and with the same polarization as the Z-
component of the pump field (ZpZsZi). Fig. 1 defines the
laboratory axes and the crystals’ optical axes X, Y , and
Z, oriented as shown. Both crystals will generate down-
converted light if the pump polarization is oriented at
45◦ to the horizontal (H) and vertical (V) axes. Follow-
ing [15], we have optimized the focusing of the pump and
the fiber-matched modes using the parameter ξ = L/zR,
where L is the length of the crystal and zR is the Rayleigh
range, such that a maximum amount of the emission that
is generated is collectible into single-mode fibers. The op-
timal values for our configuration are ξp = 1.3, ξs = 2.0,
and ξi = 2.3, respectively.

The use of single-mode fibers to collect the light will
erase all spatial information that reveals from which crys-
tal the photons came, except for the polarization degree
of freedom. Therefore, each of the beams will interfere
in the diagonal basis and get entangled in polarization.
(Note that the spatial information is partly correlated
with frequency via the phase-matching condition, and
that indistinguishability could also be achieved via fre-
quency filtering.) The resulting state is the Bell-state,

|Φϕ〉 =
1√
2

(

|V〉s|V〉i + eiϕ|H〉s|H〉i
)

, (1)

with a relative phase ϕ that we can control. As in most
cases, it is required that the probability of creating more
than a single pair within a time determined by the co-
herence time of the photons, or the detector gate-time,
whichever is longer, is negligible, and for moderate pump-
powers and relatively short gate-times or wide band-
widths, this probability is very small, but not vanishing.
Assuming a Poissonian distribution, the probability be-
comes Pn≥2 = 1− (1+m)e−m, where m = ∆tgβPpλp/hc
is the mean photon number in a single random gating.
For a typical detector gate-time ∆tg = 5 ns, pump-power
Pp = 540 µW, and conversion efficiency β = 3 × 10−10

we get m = 2 × 10−3 and Pn≥2 = 2 × 10−6.
Fig. 2 will serve as an illustration of the problem of

optimizing the focus of the pump-mode, and the fiber-
matched modes with respect to two crystals. As a com-
promise, the pump-beam is focused at the interface be-
tween the crystals, in the anticipation that the profile of
the generated emission exactly trails the profile of the
pump-beam. However, numerical simulations with the
software developed in [15] show that the waist of the
emission will be shifted towards the center of each crystal,
so that neither the vertically nor the horizontally polar-
ized photons will couple perfectly into the fiber simulta-
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FIG. 2: The figure shows a Venn diagram, which is used
to illustrate the single coupling efficiencies γs and γi, pair
coupling γc, and conditional coincidences µs|i and µi|s as a
fractional number representing the area of a set. The elements
contained in a specific set represent photon pairs that are
coupled into a fiber taken from the universal set of pairs,
Ωp, which contains all pairs generated from the crystals (V
or H) within the bandwidth of the detector filter ∆λ. The
set Ωp is normalized to unity and represents perfect coupling.
Maximum overlap of all sets is needed to generate the best
entanglement in the fiber, which is represented by the darkest
shaded area in the diagram (the union of all sets).

neously. The figure shows the different types of coupling
efficiencies represented as sets in a Venn-diagram, where
each element of a set represents a photon pair generated
by the crystals in some spatial mode. That is, the collec-
tion of all elements within each set defines which pairs are
coupled into the fiber for some specific focusing condition,
in such a way that the coupling efficiency corresponds to
the total area of the set. The problem can be described in
two parts: first, the need to overlap the matching modes
of the signal and idler, represented by the coupling effi-
ciencies γs and γi, for each polarization separately (i.e.
by optimizing the pair coupling γc = µi|sγs, via the con-
ditional coincidence µi|s), and second, the need to over-

lap the vertically, γV, and the horizontally, γH, polar-
ized photons for both the signal and idler. It is only
in the intersection of all sets where entanglement exits,
and any detection of photons outside of this set will limit
the visibility in the ±45◦-basis (denoted here D/A-basis)
by contributing to a mixed state. This picture is valid
for many types of sources, and we believe that the cou-
pling efficiencies in many cases in the literature are esti-
mated in an incorrect way, as it is important to note that
γc 6= γsγi (especially in non-degenerate regimes). By this
short discussion (see [25] for a comprehensive discussion),
we hope to have illustrated that it is not necessarily best
to optimize each arm individually to find the greatest co-
incidences, but rather, to simultaneously optimize both
arms.

As we have mentioned, the different polarizations need
to interfere, and therefore a major concern is that they
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= calcite
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= entangled area
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L b

idler
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FIG. 3: Color online. The figure illustrates the effects of chro-
matic dispersion resulting from the strong non-degeneracy of
the signal and idler photons, with group refractive indices ng,s

and ng,i. a) A pair created at the end-facet of the V-crystal
(black dots) will non-interactively pass through the H-crystal,
after which the signal and idler wavepackets become separated
by a time τ1 = (nX

g,s − nX
g,i)L/c before hitting the detectors.

As seen from the detectors’ viewpoint, for the same pair to
instead have been created in the H-crystal (black dots), its
wavepackets would necessarily need to have separated by the
same amount, given by τ ′

1 = (nZ
g,s−nZ

g,i)b/c, in order to inter-
fere with (i.e. overlap with, or be indistinguishable from) the
first case. (The superscripts refers to different polarization-
axes.) Any pair created within the gray area (between black
and white dots), are separated by a time τ ≥ τ1 = τ ′

1, and
will always find a corresponding position in the orthogonal
crystal to interfere with, according to the detectors; however,
all the pairs from the white area of either crystal will be dis-

tinguishable in time from any pair of the other crystal, i.e. the
wavepackets are non-overlapping due to different dispersions,
and contribute therefore to a mixed output state. b) If we
put a birefringent plate of thickness d in one of the arms, the
time-separation for a pair created at the end-facet of the V-
crystal is reduced to τ2 = (nX

g,s−nX
g,i)L/c+(1−ne

g,c)d/c < τ1,
for which some d equals the time-separation of an interfering
position at the end-facet of the H-crystal, τ2 = −(1−no

g,c)d/c.
Consequently, all H and V-pairs now show “self-interference”,
and a pure output state is created. Note that two pairs cre-
ated within the coherence time of the pump (which needs to
be longer than L) are always coherent, ignoring dispersion.

are not distinguishable by time information, noting the
limited extent of the photon wave-packets. For long crys-
tals, the photon pairs will separate by chromatic disper-
sion, due to the very different group velocities between
the strongly non-degenerate signal and idler. This will
occur to a degree that is different for pairs created in
the first crystal than for pairs created in the second, be-
cause the pairs from the first crystal also need to pass
through the second. The differences in group velocities
between signal and idler are not the same for light polar-
ized along the Z-axis and the X-axis, implying that not
all pairs, created along the length of either crystal, will
find any (possibly) generated pairs to interfere with from
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the other crystal. Some photon-pairs will therefore be
distinguishable by temporal information. See Fig. 3 for
an illustration. We would like to point out that, while
this chromatic two-photon dispersion effect is reminis-
cent of the “two-photon dispersion” effects discussed in
[1] or [26], it does not have the same origin, although
the current effect can also be compensated for by an ex-
tra piece of crystal. The chromatic effect comes as an
disadvantage when placing the crystals adjacent to each
other, and could in principle be avoided by an “interfer-
ometric” solution [6, 12], in which the pump beam splits
into two separate arms, impinges onto each of the crys-
tals, or onto a single crystal but in opposite directions,
and recombines on a beam-splitter. Still, we believe the
current solution requires fewer optics, is easier to align,
and can be made more compact.

The previous discussion gave a limited, although intu-
itive, understanding of the origin of a mixed state, but, as
we will show in the next section, a mathematical deriva-
tion will give additional insights into how the effect of
decoherence is affected by the group velocities.

III. THE TWO-CRYSTAL TWO-PHOTON

QUANTUM STATE

In this section, we derive the output state from the two-
crystal source in terms of the frequency and polarization
degrees of freedom |ε〉⊗|χi,j〉, where i, j = {1 = “V”, 2 =
“H”} denotes the polarizations. Emission from each of
the crystals, V and H, will thus be represented by |χ11〉
and |χ22〉, respectively, according to Eq. (A.15) of the
Appendix and Fig. 1. As just described, the vertical light
will be subject to dispersion upon its passing through the
second crystal. We will formulate this mathematically by
introducing a unitary transform acting on the states. The
eigenequation which describes the transformation UL on
the state of the first crystal, when it passes through the
second crystal, is

UL|χ11〉 = ei(ksL+kiL)|χ11〉
= ei(nX

s ω0s+nX
i ω0i+(nX

g,s−nX
g,i)ε)L/c|χ11〉, (2)

where the length of the crystal, L, enters the phase term,
together with the frequency ε. With reference to the
Appendix, and Eq. (A.15), we can then express the out-
put state of each crystal as

|Ψ11〉 =
1

B

∫

dε ULU(ε) |ε〉 ⊗ |χ11〉,

|Ψ22〉 =
1

B

∫

dε U(ε) einX
p ωpL/c |ε〉 ⊗ |χ22〉, (3)

where an extra phase-term has been added to the pump
field in the second crystal due to the pump field passing
through the first crystal, U(ε) is the state amplitude, and
B is a normalization constant. The sum of these two kets

will give us the combined two-crystal two-photon state,

|Ψε〉 = |Ψ11〉 + |Ψ22〉

=
1

B

∫

dε
[

ULU(ε)|ε〉 ⊗ |χ11〉

+ U(ε)einX
p ωpL/c|ε〉 ⊗ |χ22〉

]

=
1

B

∫

dε

2
∑

i,j=1

cijVij(ε) |ε〉 ⊗ |χij〉, (4)

where we have introduced V11(ε) = 1
B ULU(ε), V22(ε) =

1
B U(ε)einX

p ωpL/c, and the coefficients cij = 1/
√

2 for i =

j, and cij = 0 for i 6= j, normalized such that |c11|2 +
|c22|2 = 1.

We can now form the two-photon density matrix

ρε = |Ψε〉〈Ψε̃|

=
1

B2

∫∫

dε dε̃

2
∑

i,j,k,l=1

cijc
∗
klVij(ε)V

∗
kl(ε̃) |ε〉〈ε̃| ⊗ |χij〉〈χkl|,

(5)

from which we would like to remove the frequency in-
formation. For that, we need to note that we could, in
principle, measure the frequency of the photons at a res-
olution much smaller than the bandwidths of the filters.
The resolution is given by a wavelength bandwidth ∆λres,
which is set by the timing-jitter ∆tjitter of the detectors.
For the light passing the filters to remain transform-
limited upon detection the detectors necessarily need
a timing-jitter much smaller than the coherence time.
However, filter bandwidths used in practice are relatively
large > 0.1 nm, in wavelengths, which makes the timing-
jitter (∆tjitter ≈ 350 ps) orders of magnitudes larger than
the corresponding true coherence time. This effectively
means that the detector itself sets a minimum resolution
for the wavelength, ∆λres = λ2/c∆tjitter < 23 pm, such
that the coherence time of the photons detected in coin-
cidence are practically longer, set by the timing-jitter. In
other words, as the detector in principle can determine
the photon’s frequency components in a fine resolution,
it means that the frequency components should all be
added incoherently within the filter bandwidth. There-
fore, it is appropriate to take the partial trace over the
frequency mode:

ρ = Trε[ |ε′〉〈ε′| ρε] =

∞
∫

−∞

dε′〈ε′|ρε|ε′〉

=
1

B2

2
∑

i,j,k,l=1

cijc
∗
kl

∫

dε′Vij(ε
′)V ∗

kl(ε
′) |χij〉〈χkl|. (6)

Let ρijkl denote the elements of the density matrix, of
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which the only non-zero ones become

ρ1122 = c11c
∗
22

1

B2

∫

dε′ULU(ε′) U∗(ε′)e−inX
p ωpL/c

=
1

2

χ2
2 f2

1 E2
0L2

~2B2

×
∫

dε′ |As(ε
′)|2|Ai(ε

′)|2

× e−inX
p ωpL/c ei(nX

s ω0s + nX
i ω0i + (nX

g,s−nX
g,i)ε

′)L/c

× sinc2

[

Lε′

2c
(nZ

g,s − nZ
g,i)

]

= ρ∗2211 (7)

and

ρ1111 = ρ2222 =
1

2
. (8)

The off-diagonal element, which describes the degree of
coherence in the entangled state, can be further simplified
and identified as a Fourier transform:

ρ1122 =
1

2
e−inX

p ωpL/c ei(nX
s ω0s+nX

i ω0i)L/c

×
∫

dε′ g(ε′) eiτXε′ sinc2(
τZ

2
ε′), (9)

where

g(ε′) =
χ2

2 f2
1 E2

0L2

~2B2
|As(ε

′)|2|Ai(ε
′)|2,

τX = (nX
g,s − nX

g,i)L/c,

τZ = (nZ
g,s − nZ

g,i)L/c. (10)

In Fig. 4, we have plotted the result of Eq. (9) versus
the length of the crystals using different crystal materi-
als to generate 810 and 1550 nm. We observe that the
dispersion in long, periodically poled LiNbO3 (PPLN)
crystal materials completely suppresses the ρ1122 term,
and thereby the entanglement. For PPKTP this is not
the case, and if we search for ρ1122 in the limit of an
infinitely long crystal we find that

lim
L→∞

|ρ1122| =

{

1 − τX

τ
Z

if τX < τZ

0 if τX ≥ τZ ,
(11)

which, for PPKTP leads to ρ1122 = 0.203, implying still
a visibility of entanglement (i.e. of the second-order in-
terference fringes) of 40.6%. The different results stem
from the material-specific relation between τX and τZ . If
the material is more strongly dispersive for polarizations
along the Z-axis than the X-axis, then the off-diagonal
term will be bounded below by a non-vanishing value;
otherwise, the off-diagonal term will approach zero. As
expected, we found that all numbers increase as we go
closer to having degenerate wavelength pairs. We also
note that the bandwidth of the frequency filter affects the
shape of the curve; a narrower bandwidth increases the
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FIG. 4: Color online. The off-diagonal term, Eq. (9), of the
generated density matrix plotted versus crystal length, which
corresponds to the visibility of entanglement via the relation
V = 2ρ1122. Solid line: PPKTP-crystal with 10 nm idler
filter. Dots over solid line: PPKTP with 1 nm idler filter.
Dash-dotted line: PPLN or PPMgOLN with 10 nm idler filter.
Dashed line: PPKTP at optimal fiber coupling using the idler
fiber’s own filtering. Diamond: experimental value for L =
4.5 mm using PPKTP and with a 10 nm idler filter. Solid
point: experimental value for L = 4.5 mm using PPKTP and
with a dispersion canceling calcite plate of thickness d = 0.86
mm.

extent of the temporal coherence and provides a greater
overlap between wave-packets, leading to an arbitrarily
increased ρ1122. Emission that is optimally coupled into
single-mode fibers will automatically be filtered also in
frequency, since the frequency is correlated to spatial in-
formation via the phase-matching conditions [15], and for
long PPKTP crystals, in such a case, the minimum value
of ρ1122 equals 0.266 (V = 53.2%).

IV. DECOHERENCE CANCELLATION

We will now briefly show how the pure state, |Φϕ〉 in
Eq. (1), can be fully regained, for generation in long crys-
tals, by inserting a highly birefringent crystal plate into
one of the arms. The eigenequations for each polarization
state propagating through such a crystal plate become

UC |χ1j〉 = eikcd|χ1j〉
= ei(no

cω0i−no
g,cε)d/c|χ1j〉,

UC |χ2j〉 = eikcd|χ2j〉
= ei(ne

cω0i−ne
g,cε)d/c|χ2j〉, (12)

with the density matrix after the plate becoming

ρε(d) = UCρεU †
C . (13)
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FIG. 5: Color online. The off-diagonal term, Eq. (14), plot-
ted versus the crystal lengths, L, and the thickness, d, of a
dispersion-canceling calcite plate, using PPKTP with a 10 nm
idler filter. The dashed line represents perfect cancellation.

Repeating Eqns. (5) to (9), we arrive at

ρ1122 =
1

2
e−inX

p ωpL/c ei(nX
s ω0s+nX

i ω0i)L/c

× ei(no
cω0i−ne

cω0i)d/c

×
∫

dε′ g(ε′) ei(τX−κ)ε′ sinc2(
τZ

2
ε′), (14)

where g(ε′), τX , and τZ is defined by Eq. (10), and where

κ = (no
g,c − ne

g,c)d/c. (15)

Now, if d is chosen such that κ = τX , it means that we
have perfectly canceled the decoherence and retrieved a
pure state. Hence,

ρ1122 = ρ∗2211 = ρ1111 = ρ2222 =
1

2
. (16)

Note that, by adjusting d and tilting the plate (affecting
ϕ) our source can prepare any arbitrary mixed state of
the kind ρ = V |Φϕ〉〈Φϕ| + (1 − V )ρm, where ρm =
1
2 (|χ11〉〈χ11|+ |χ22〉〈χ22|), and V is the visibility. Fig. 5
shows a plot of ρ1122 versus L and d.

V. EXPERIMENTAL RESULTS

The experimental setup used when characterizing the
source’s output state is shown in Fig. 6. As a pump, we
use a frequency-doubled Nd:YAG laser emitting approx-
imately 60 mW in the TEM00 mode at 532 nm, which
can be variably attenuated. Its M 2 factor was measured
to be 1.06. This factor is commonly used to quantify
the quality of laser beams, and can be determined by
measuring the longitudinal profile of the beam [27]. A

value of unity states that the beam is in the fundamental
Gaussian single-mode. For all other modes M 2 > 1.

After a band-pass filter (BP532) that removes any re-
maining infrared light, we “clean up” the polarization
using a polarizing beam-splitter (PBS). The polarization
is controlled by a half-wave plate (HWP) and a quarter-
wave plate (QWP) in front of the crystal. The pump
beam is focused onto the crystal using an achromatic
doublet lens (fp = 50 mm), which introduces a minimal
amount of aberrations, so as not to destroy the low M 2–
value. The QWP is set to undo any polarization ellipti-
sation effects caused by the lens, and fluorescence caused
by the same lens is removed by a Schott-KG5 filter (SP).

The next components are the two PPKTP crys-
tals, which are heated in an oven to a temperature
T ≈ 100 ◦C. After the crystals, we block the pump light
with a 532 nm band-stop filter, and the signal and idler
emission is focused by achromatic doublet lenses. To
separate the 810 nm and 1550 nm emission, we use a
dichroic mirror made for a 45◦ angle of incidence. The
first lens (fsi = 30 mm) is common to both signal and
idler, and its task is to refocus the beams somewhere near
the dichroic mirror. The next two lenses (fs = 60 mm
and fi = 40 mm) collimate each beam, which are then
focused into the fiber tips (with the mode field diameters
being MFD810 = 5.5 µm and MFD1550 = 10.4 µm) using
aspherical lenses with f = 11 mm. Next, we use quarter-
wave plates (QWP), half-wave plates (HWP), and polar-
izing beam-splitters (PBS) in each arm to analyze the
state. In the idler arm, we also place the tiltable cancel-
lation plate, which is made of calcite. In front of the fiber
couplers, we have first Schott-RG715/RG1000 filters to
block any remaining pump light, and then interference
filters (BP) of 2 nm and 10 nm bandwidth at the 810
nm and 1550 nm side respectively. The detectors used
are a Si-based APD (PerkinElmer SPCM-AQR-14) for
810 nm with a quantum efficiency ηs = 60% and a home-
made InGaAs-APD (Epitaxx) module for 1550 nm with
ηi = 18%, gated with 5 ns pulses. To avoid afterpulsing
effects, the InGaAs-APD is used together with a hold-off
circuit (10 µs) for all of the measurements. The pulses
were generated using a digital delay generator (DG535)
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QWP HWP

PBS 532nm
block
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QWP
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FIG. 6: Experimental setup used to measure the density ma-
trix. PBS: polarizing beam-splitter, HWP: half-wave plate,
QWP: quarter-wave plate, SP: short-pass filter, BP: band-
pass filter, SMF: single-mode fiber.
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TABLE I: Three runs at different alignments and pump powers, showing the coupling efficiencies, photon rates in fibers,
conversion efficiency, and the production rate of the system.

Pp [mW] γs γi γc µi|s σ Rs [s−1] Ri [s−1] Rp [s−1] Rc [s−1] β Rprod
c [ s−1THz−1mW−1]

60 0.32 0.79 0.11 0.12 0.34 2.32 × 106 2.39 × 106 8.61 × 106 274 × 103 5 × 10−11 5.0 × 103

4.5 0.32 0.56 0.10 0.11 0.32 167 × 103 121 × 103 617 × 103 19 × 103 5 × 10−11 4.6 × 103

0.54 0.46 0.38 0.22 0.27 0.57 100 × 103 195 × 103 450 × 103 27 × 103 3 × 10−10 55 × 103
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FIG. 7: Color online. Spectrogram of signal emission inside
single-mode fibers without interference filters. The crosses
(∆λs = 6 nm) and circles (∆λs = 4 nm) represent experi-
mental data for the H and the V crystal, respectively, to be
compared to theoretical predictions for a 2 nm (solid line) and
a 3 nm (dashed line) long crystal. Also shown is the downcon-
version spectrum in free space, experimentally (dots) and in
theory (dotted line), demonstrating the fiber’s own filtering.

from SRS, with a maximal repetition rate of 1 MHz, and
a trigger dead time of 1 µs.

We have used a spectrograph (SpectraPro 500i, ARC)
to measure the bandwidth of the signal emission using
a single-mode fiber without any filter; see Fig. 7. The
bandwidth was found to be 4 nm for the V-crystal and
6 nm for the H-crystal. The results in [15] suggests that
the effective lengths of the crystals being poled must then
be 3 mm and 2 mm, respectively, but also that the 2 mm
crystal should give ≈ 55% of the photon-rate of the 3
mm one. Experimental agreement is good, as we saw
the H-crystal giving half the rate of the V-crystal. When
measuring, we refocused the fiber coupling for each crys-
tal to find maximum counts, while keeping the pump po-
larization exactly at 45◦. As described in connection to
Fig. 2, the best tradeoff when collecting from both crys-
tals simultaneously is to set the focus of the pump mode
and the fiber-matched modes at the intersecting faces.
Experimentally, however, in order to produce as pure a
Bell-state as possible, we needed to balance the rate of
each crystal, which we did by shifting the fiber-matched
focus a bit closer to the H-crystal and by turning the
pump-polarization slightly towards H. (The focus point
was moved by turning the focusing knob on the fiber cou-

pler.) In this way we allowed lower coupling efficiencies
than the maximum attainable. Recalling the definition
of the focusing parameter ξ from Section II and [15], the
focusing conditions achieved with available lenses were:
ξp = 2.1 for the pump mode, ξs = 3.2 for the signal’s
fiber-matched mode, and ξi = 2.5 for the idler’s.

With this configuration, we obtained the results
showed in Table I. In each column of the table, γs repre-
sents the signal’s single coupling efficiency, γi the idler’s,
γc the pair coupling efficiency, µi|s the conditional co-
incidence, and σ the correlation efficiency, which corre-
sponds directly to µi|s but includes a compensation for
the transmission of the 1550 nm filter, δi = 0.35, and the
transmission of the 810 nm filter, δs = 0.85. The sin-
gles photon-rate in the signal fiber, Rs, and the idler Ri,
were both derived from detected raw counts, taking into
account the detection efficiencies. The total generated
rate Rp of pairs before fiber coupling was estimated from
detected counts using a multimode fiber. The pair rate
in the fibers, Rc, was deduced from the above efficiencies
and the detected raw coincidence rate, with accidental
counts subtracted by assuming that Ri originates from
a Poissonian distribution at random gating [25]. The
following relations between the coupling efficiencies and
the rates were used: Ri = δiγiRp, Rs = δsγsRp, and
Rc = δiδsγcRp.

The conversion efficiency β is the fraction of pump
photons converted into signal and idler pairs, leading
to a pair production rate Rprod

c , which equals 5 × 103

s−1THz−1mW−1 at the pump power Pp = 60 mW and
with the idler detector gated at 585 kHz. (The produc-
tion rate is the pair rate normalized to the wavelength
bandwidth in THz and the pump power in mW.) The sec-
ond row of Table I shows similar results for a lower pump
power and an idler gate rate of 91 kHz. We also took mea-
surements without any interference filter at the idler side
(but still with a 2 nm filter at the signal), with the results
shown in the third row of Table I, for Pp = 540 µW and
with a gate-rate of 57 kHz. The results are improved,
not because of the lower power, but because of a simul-
taneous optimization of the arms in order to maximize
γc. The table shows how γi decreases in the process.
The correlation efficiency σ now includes the estimated
transmission-loss of the optics at the idler side, and a cor-
rection factor for the unequal filtering between signal and
idler (the idler fiber itself provides a frequency filtering
of ∆λi = 14.7 nm). The best conditional coincidence is
µi|s = 0.27, and the conversion efficiency, β = 3 × 10−10,
was possibly improved by aligning to a more homoge-
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FIG. 8: Color online. The plot shows the raw visibility
curves obtained at a pump power Pp = 4.5 mW, gate-rate
91 kHz, without subtraction of background counts (includ-
ing accidentals) shown at the bottom. Each curve corre-
spond to a different polarization setting of the signal arm,
φV

s = −3π/16, φH
s = π/16, φD

s = −π/16, and φA
s = 3π/16,

as indicated the inset. Fitting of the collected data gives
VH = 99.6 ± 0.2%, VV = 99.2 ± 0.2%, VD = 92.7 ± 0.2%,
and VA = 94.2 ± 0.2%. When background counts were not
subtracted, we obtained the visibilities VH = 95.6 ± 0.2%,
VV = 96.2 ± 0.2%, VD = 89.6 ± 0.2%, and VA = 90.9 ± 0.2%.

neously poled area of the crystals. We believe that the
pair production rate, 55×103 s−1THz−1mW−1, is one of
the highest yet reported for polarization entangled pho-
ton pairs generated in crystals and launched into single-
mode fibers. Frequency filtering at a narrow bandwidth
of 50 GHz would imply 3× 103 s−1mW−1 of pairs in the
fibers. Besides, for narrow filtering, the photon flux has
been shown [15] to be ∝ L

√
L, and so, by using longer

crystals (L = 50 mm) we could still reach 20 s−1mW−1

at a 10 MHz bandwidth, which is the bandwidth regime
of e.g. Rb-atom based quantum memories. As a com-
parison, we have derived numbers using data available
for some other experiments, among which the best in-
clude Fiorentino et al. [12], who seem to have 22 × 103

s−1THz−1mW−1 of pairs being generated by two 10 mm
long crystals into free-space; König et al. [20], who claim
to have 300×103 s−1THz−1mW−1 pairs from two 20 mm
long crystals into fibers; and Li et al. [9], who seem to
have an exceptional value of 4.3 × 106 s−1THz−1mW−1

pairs generated directly inside a non-linear fiber.

Fig. 8 shows the visibility curves obtained, with and
without subtraction of background counts, including false
coincidences. Note that the number of “accidental” co-
incidences increases with the pump power, as the prob-
ability of more than a single pair to arrive within the
gate-time of the detector increases, as shown in section
II.

We have also measured a violation of the CHSH-
inequality [28] by taking measurements of the

coincidence-rate functions

Ri,j =
1

2
[1 + ijVi,j cos(4φs + 4φi)], (17)

where i, j = ±1 denotes the four combinations of mea-
surable output-arms of the two PBS:s in the signal and
idler, Vi,j is the corresponding visibility, and φs, φi, are
the angles of the HWPs. The correlation function be-
comes

E(φs, φi) =
R1,1 − R1,−1 − R−1,1 + R−1,−1

R1,1 + R1,−1 + R−1,1 + R−1,−1

= V cos(4φs + 4φi), (18)

where V = V1,1, assuming fully equal rate functions, so
that we can rely on measurements taken at only one of
the output arms. Entanglement is present iff the CHSH-
inequality is violated,

S = E(φ1
s , φ

1
i ) + E(φ1

s , φ
2
i ) + |E(φ2

s , φ
1
i ) − E(φ2

s , φ
2
i )| ≤ 2,

(19)

where the correlation function is to be measured at the
following pair of angles: φ1

s = −π/16, φ1
i = 0 and

φ2
s = π/16, φ2

i = π/8. The parameter S can reach the

maximum value of 2
√

2, corresponding to 100% visibil-
ity, and it is well known that the average visibility needs
to be > 71% to violate the inequality, if the state is
subject to equal decoherence in all bases. In our case,
the state decoheres in the H/V-basis, while maintaining
nearly perfect visibility for the H and V settings. Let φ1

s

represent the H/V-basis, and φ2
s the D/A-basis. Further-

more, let VH,V and VD,A represent the visibilities in each
respective basis. We get

S = VH,V cos(−π

4
+ 0) + VH,V cos(−π

4
+

π

2
)+

∣

∣

∣VD,A cos(
π

4
+ 0) − VD,A cos(

π

4
+

π

2
)
∣

∣

∣

=
√

2(VH,V + VD,A), (20)

which shows that, for VH,V = 100%, the requirement is
VD,A > 41% for a violation of Eq. (19).

A direct measurement of S at the above angles yields
S = 2.679 ± 0.004 at a pump power Pp = 60 mW, after
subtraction of accidental counts (gate-rate was 585 kHz).
The CHSH-inequality was violated by 177 standard de-
viations in 10 s, or 56σS s−1/2. To our knowledge, this is
one of the highest reported to date; only Kurtsiefer et al.

[3] exceeds this rate, with 148σS s−1/2. Other examples

of good results can be found in [11] (50σS s−1/2) and

in [12] (38σS s−1/2). We have re-derived these numbers
using available data, in the hopes of having created di-
rectly comparable normalized numbers. The derivation
was made as follows. Assuming no fluctuation of the rate
other than that originating from Poissonian-distributed
single-photon detections, the standard deviation of the
coincidence rate Ri,j becomes σR =

√

Rmax/2/
√

TR,

where Rmax is the peak coincidence rate,
√

Rmax/2 is the
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FIG. 9: Color online. Experimentally determined density
matrix, ρexpt, (real and imaginary parts) obtained by quan-
tum state tomography on the generated polarization entan-
gled state (1 = “V” and 2 = “H”). (Pump power, Pp = 60
mW).

standard deviation of the average photon-rate, TR is the
integration-time in seconds, and the central limit theo-
rem is used to sum over time. According to Eq. (18),
the standard deviation of the correlation function be-
comes σE =

√
4σR/2Rmax, and by Eq. (19) we have

σS =
√

4σE = 2/
√

2RmaxTR, such that S = Sm ± σS ,
where Sm is the measured value over TR seconds. Thus,
the normalized “speed of CHSH violation” becomes

x =
Sm − 2

σS

√
TR

=
(Sm − 2)

√
2Rmax

2
[s−1/2], (21)

which only depends on the maximum rate and the mea-
sured value of S. If the accidental counts are not sub-
tracted from the coincidence counts, we instead mea-
sure the value S = 2.6283 ± 0.0102 (Pp = 4.5 mW),

with the CHSH-inequality being violated by 19σS s−1/2,
showing that we truly have a high degree of entangle-
ment launched into the fibers. This is important in
entanglement-based quantum key distribution (QKD)
systems that do not allow a subtraction of the back-
ground. Rather, any accidentals will increase the quan-
tum bit error rate (QBER) and reduce the final bit rate,
equivalently degrading the system performance.

Following Ref. [29], we have made a complete tomog-
raphy of the state, with the resulting density matrix be-
coming

ρexpt =

[

0.5197 −0.0237 0.0300 0.4573
−0.0237 0.0069 0.0146 −0.0114
0.0300 0.0146 0 0.0010
0.4573 −0.0114 0.0010 0.4734

]

+ i

[ 0 0.0628 −0.0150 0.0720
−0.0628 0 −0.1107 0.0206
0.0150 0.1107 0 −0.0581
−0.0720 −0.0206 0.0581 0

]

, (22)

which is also plotted in Fig. 9. Recall that the off-
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FIG. 10: Scheme to create hybrid-coded entanglement. BS:
beam splitter, PBS: polarizing beam splitter, HWP: half-wave
plate, BP: band-pass filter, BG: Bragg grating, FM: Faraday
mirror.

diagonal element, ρ1122 = 0.457, corresponds approxi-
mately to the visibility in the D/A-basis, V ≈ 2ρ1122 =
0.915, which is indeed close to the measured visibilities.
When applying the density matrix to Wootters’s entan-
glement of formation measure [30], we get the value E =
0.56. The entanglement of formation equals unity for a
pure Bell-state, as do the fidelity, F = 〈Φϕ|ρexpt|Φϕ〉,
which is found to be 0.95 for the generated state.

VI. FUTURE DIRECTIONS: A

HYBRID-CODED ENTANGLEMENT SOURCE

In order to motivate the usefulness of the source, we
provide in Fig. 10 a complete setup for quantum com-
munication (e.g. QKD). The scheme, which is under im-
plementation, uses long crystals (2× 50 mm) in order to
achieve a bandwidth of < 80 GHz, which means higher
production rates and less dispersion in combination with
a telecom Bragg grating as dispersion compensator. For
long crystals, the optimal focusing is weaker, which leads
to a more compact source with fewer collimating lenses
placed at closer distances to each other. Furthermore,
improvement of the conditional coincidences as well as
the size of the source can be achieved by minimizing the
number of components, each of which contribute to loss.

In Bob’s arm, the polarization information is converted
into time information in order to avoid the polarization
dispersion in standard telecom fibers. (For a thorough
review on photonic qubits, please refer to [31].) A polar-
izing beam splitter sits in an unbalanced Mach-Zehnder
interferometer, directing vertical photons into the long
arm and horizontal into the short. The vertical pho-
tons are rotated to horizontal before the photons in both
arms are recombined on a fiber-based beam-splitter and
sent to a Bragg grating. The result is a time encoded
qubit with all polarization information erased. (To our
knowledge, there is no way to erase this information pas-
sively without having to accept 50% losses in the un-
used arm of the beam-splitter, which is an disadvantage,
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but could also be turned to an advantage by introduc-
ing a third party Charlie.) The resulting state becomes

|Φ′〉 = 1/
√

2
(

|V〉s|L〉i + eiϕ|H〉s|S〉i
)

, where L denotes
the long arm and S the short arm. On Bob’s analyzer
side, there is an unbalanced all-fiber Michelson interfer-
ometer with a single beam-splitter to decode the qubits.
The interferometer uses Faraday mirrors, which reflect
the light in such a way that the polarization is exactly
orthogonal when the photons arrive a second time at the
beam-splitter to interfere, and thereby avoids the need
for polarization controllers [32]. The phase information
of the qubit defines a complementary basis to time, and
for that information to remain, the path length differ-
ence between the short and the long arm needs to be
exactly matched to that of the preparing interferometer,
requiring both interferometers to be temperature stabi-
lized. However, longer coherence length of the emitted
photons (an effect of narrow bandwidth) will effectively
relax these requirements. One advantage of the above so-
lution is that the preparing interferometer has translat-
able fiber couplers inside the interferometer, which sim-
plifies their mutual alignment. Also, we avoid the possi-
bly difficult alignment of three interferometers, as Alice
adheres to polarization coding. Another important con-
dition for the qubits to remain coherent is that the delay
between two consecutive pulses is short enough (≈ 5 ns)
that they experience the same phase shift due to vibra-
tions and temperature fluctuations when traveling over
the fiber. On Alice’s side, the analyzer realizes a standard
polarization decoder. Note that the H/V or D/A-basis
is randomly chosen by the first beam-splitter, just as at
Bob’s side, which implies that there is no need for any
active devices. Note also that there exists the possibility
to delay the outputs of each detector arm on Alice side
and combine into different time-slots for detection with
a single detector, instead of four, which may reduce the
need for space.

VII. SUMMARY

In this article, we have presented work on a two-
crystal source that uses PPKTP for the production of
polarization-entangled photon-pairs in a single spatial
mode, leading to efficient fiber coupling. The source is
suitable for schemes that combine polarization and time
coding. We have shown how distinguishability between
photon-pairs is introduced for this type of colinear source,
due to a special kind of chromatic two-photon dispersion.
We have derived and analyzed the output state of SPDC
for this case, with the goal to cancel the decoherence and
regain a pure state using an extra piece of birefringent
crystal. We have determined the quality of entanglement
for the reported setup using various measures, including
the method of quantum state tomography, and we draw
the conclusion that this is one of the brightest sources
available for polarization entanglement in terms of Bell-
inequality violation and production rates.
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APPENDIX: THE TWO-PHOTON FREQUENCY

AND POLARIZATION QUANTUM STATE

In this Appendix, we derive the quantum state of a
single crystal in terms of frequency and polarization de-
grees of freedom, using the interaction picture of SPDC
[33].

The evolution of the number state vector is given by

|ψ〉 = exp





1

i~

t0+T
∫

T

dtĤ(t)



 |ψ00〉

≈



11 +
1

i~

t0+T
∫

T

dtĤ(t)



 |ψ00〉, (A.1)

where |ψ00〉 is the number state at time t0 and Ĥ(t) is
the interaction Hamiltonian,

Ĥ(t) =

L/2
∫

−L/2

dz

∞
∫

−∞

dy

∞
∫

−∞

dx χ(2)Ê(+)
p Ê(−)

s Ê
(−)
i + H.c.,

(A.2)

displayed in a Cartesian coordinate system, r = xex +
yey + zez. There are three interacting fields in the crys-
tal’s volume, ignoring all higher-order terms (n ≥ 3) of
the non-linearity χ(n). All three fields have the same
polarization (ZZZ):

E(+)
p = E0 e−i(k0psp·r−ωpt+φp) (A.3)

Ê(−)
s =

∫

dφs

∫

dωsAs(ωs)
∑

ss

ei(ksss·r−ωst+φs)â†
s(ωs, ss)

(A.4)

Ê
(−)
i =

∫

dφi

∫

dωiAi(ωi)
∑

si

ei(kisi·r−ωit+φi)â†
i (ωi, si),

(A.5)

where the pump field is classical and monochromatic so

that we can replace Ê
(+)
p by E

(+)
p . The plus sign denotes

conjugation, i.e annihilation (+) or creation (-) of the
state. We have also introduced the notation k = ks,
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where s = pex + qey + mez, is the unit length vector of
k with components in each of the three dimensions [34],
as defined by the coordinate system in Fig. 1. The pump
field is a plane wave propagating in the z-direction, sp =
ez. For signal and idler, we sum over both frequency and
angular modes, where â(ω, s) is the field operator, and
A(ω) is the frequency amplitude of a Gaussian-shaped
detector filter having the bandwidth ∆λ (FWHM) and
center wavelength λc (all wavelengths in vacuum). Via
the relation ω = 2πcnλ/λ, its form is given by

A(ω;λ) = e−2 log(2)(λ−λc)2/∆λ2

. (A.6)

Each signal and idler photon is created with a random
phase, φs and φi, respectively, which we need to sum over.
The phase of the pump, φp, is constant and arbitrary.

For periodically poled materials, the spatial variation
of the nonlinear index χ(2) has sharp boundaries, but we
will simplify and make a sinusoidal approximation using
the first term of an Fourier-series expansion of χ(2):

χ(2) = χ2

∞
∑

m=0

fme−imK·r ≈ χ2 f1e
−iK·r, (A.7)

where K = Kez = 2π/Λ ez and Λ is the grating period.

The Hamiltonian now takes the form

Ĥ(t) = χ2 f1E0

∫

dφs

∫

dφi

∫

dωs

∫

dωi

× As(ωs)Ai(ωi)

×
∑

ss

∑

si

â†
s(ωs, ss)â

†
i (ωi, si)

×
L/2
∫

−L/2

dz

∞
∫

−∞

dy

∞
∫

−∞

dx

× e−i[∆k·(xex+yey+zez) − (ωs+ωi−ωp)t + φs+φi−φp]

+ H.c., (A.8)

where the mismatch vector is

∆k = ksss + kisi − k0psp + K

= ∆kxex + ∆kyey + ∆kzez. (A.9)

Following Eq. (A.1), we now let the Hamiltonian
undergo time evolution. The mismatch vector is also di-
vided up into its x, y, and z components using Eq. (A.9).
Hence,

1

i~

∫

dtĤ(t) =

χ2 f1E0

∫

dωs

∫

dωi As(ωs)Ai(ωi)

×
∑

ss

∑

si

â†
s(ωs, ss)â

†
i (ωi, si)

×
L/2
∫

−L/2

dz

∞
∫

−∞

dy

∞
∫

−∞

dx e−i[∆kxx+∆kyy+∆kzz]

× 1

i~

2π
∫∫

0

dφsdφi

T
∫

0

dt e−i[(ωs+ωi−ωp)t + φs+φi−φp]

− H.c.. (A.10)

The integration over the interaction volume, dx, dy,
and dz, can now be easily carried out. There are three
spatial integrals, of which two are the Fourier transforms
of unity (dx and dy) and one is the transform of a box
function (dz). The transforms turn into two δ functions
and a sinc function, respectively. The time integral also
turns into a δ function of the three frequencies ωs, ωi,
and ωp. This is because we assume a monochromatic
pump beam with infinite coherence length, which effec-
tively leads to an infinite interaction time, T → ∞, even
for short crystals. Motivated by the rotational symmetry
of the emitted modes, we also change to a spherical coor-
dinate system (see Fig. 1), by replacing the summation
over s with integrals over θs, θi, ϕs and ϕi. Furthermore,
the only non-zero solution for the integration over the
random phases, φs and φi, is for the phases to add up
to a constant, yielding the relation φs + φi = φp + C. If
we let C = 0 for simplicity, and drop some constants
resulting from the integrations, we are led to

1

i~

∫

dtĤ(t) =
1

i~
χ2 f1E0

∫

dωs

∫

dωi As(ωs)Ai(ωi)

×
π/2
∫

0

sin θs dθs

π/2
∫

0

sin θi dθi

2π
∫

0

dϕs

2π
∫

0

dϕi

× â†
s(ωs, θs, ϕs) â†

i (ωi, θi, ϕi) δ(ωs + ωi − ωp)

× δ(∆kx) δ(∆ky) L sinc

[

L

2
∆kz

]

− H.c.. (A.11)

At this stage, we observe that ks and ki each depend
on ωs and ωi, respectively. Motivated by the δ-function
in Eq. (A.11), we let ωs = ω0s + ε and ωi = ω0i − ε, and
make a series expansion of the k-vectors:

ks ≈ k0s + ε
dk0s

dω0s
= k0s + ε

1

vZ
g,s

= k0s + ε
nZ

g,s

c
(A.12a)

ki ≈ k0i − ε
dk0i

dω0i
= k0i − ε

1

vZ
g,i

= k0i − ε
nZ

g,i

c
. (A.12b)
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In a spherical coordinate system, we have p = sin θ cos ϕ,
q = sin θ sin ϕ, and m = cos θ, and so the phase-mismatch
vector components become

∆kx = ks sin θs cos ϕs + ki sin θi cos ϕi ≈ 0,

∆ky = ks sin θs sin ϕs + ki sin θi sin ϕi ≈ 0,

∆kz = ks cos θs + ki cos θi − k0p + K

≈ ε

c
(nZ

g,s − nZ
g,i), (A.13)

where we have done a first-order approximation of sin θ
and cos θ for small angles, meaning that we consider only
plane waves, and where the last component is simplified
using the phase-matching condition for the forward direc-
tion, k0s + k0i − k0p + K = 0, together with Eq. (A.12).
Thanks to Eq. (A.13), we can now trivially perform the
integration over the spatial modes dθs,dθi and dϕ, which
finally leads to the following compact expression

1

i~

∫

dtĤ(t) =
1

i~
χ2 f1E0

×
∫

dε As(ε)Ai(ε)â
†
s(ε)â

†
i (ε)

× L sinc

[

Lε

2c
(nZ

g,s − nZ
g,i)

]

− H.c.

=

∫

dε U(ε) â†
s(ε)â

†
i (ε) − H.c.. (A.14)

In summary, Eq. (A.1), via Eq. (A.14), has helped us
find the frequency and polarization state generated in
one crystal, which we will write in the form

|ΨZZ〉 =
1

B

∫

dε U(ε) |ε〉 ⊗ |χZZ〉, (A.15)

where U(ε) is defined by Eq. (A.14), and where

B =

(∫

dε|As(ε)Ai(ε)|2 sinc2[Lε(nZ
g,s − nZ

g,i)/2c]
)1/2

~(χ2 f1E0L)−1 ,

(A.16)

is a normalization constant, such that | 1
B

∫

dεU(ε)|2 = 1.

Here, ε represents the frequency mode and χZZ repre-
sents the polarization mode along the Z-axis.
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We present a theoretical and experimental investigation of the emission characteristics and the flux of photon

pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in

quantum communication sources. We show that, by careful design, one can attain well defined modes close to

the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being

more easily aligned than crystal waveguides. We distinguish between singles coupling, �s and �i, conditional

coincidence, �i�s, and pair coupling, �c, and show how each of these parameters can be maximized by varying

the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we

analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and

1550 nm. Numerical calculations lead to coupling efficiencies above 93% at optimal focusing, which is found

by the geometrical relation L /zR to be �1 to 2 for the pump mode and �2 to 3 for the fiber-modes, where L

is the crystal length and zR is the Rayleigh-range of the mode-profile. These results are independent on L. By

showing that the single-mode bandwidth decreases �1/L, we can therefore design the source to produce and

couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic

dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to com-

pensate for broadened photon packets—a vital problem for time-multiplexed qubits. Longer crystals also yield

an increase in fiber photon flux ��L, and so, assuming correct focusing, we can only see advantages using long

crystals.

DOI: 10.1103/PhysRevA.72.062301 PACS number�s�: 03.67.Mn, 03.67.Hk, 42.50.Dv, 42.65.Lm

I. INTRODUCTION

Spontaneous parametric downconversion �SPDC� ac-
counts for the majority of entangled photon pairs being pro-
duced today. It can be described as a process in which the
electromagnetic field of a single photon—traveling inside a
dielectric material such as a birefringent crystal—interacts
with the atoms by absorption and gives rise to a nonlinear
response in the field of polarization, thereby leaving the pos-
sibility of two or more photons being re-emitted. The laws of
conservation of energy and momentum, together with the
randomness and indistinguishability in the process, also give
rise to entanglement, a nonlocal correlation between the pho-
tons.

In quantum communication numerous experiments have
been performed to date involving non-entangled or entangled
photons being sent over long distances, e.g., sources of her-
alded single photons �1–3�, quantum cryptography �4–6�,
and teleportation �7�. A typical such experiment involves
launching each photon of a �entangled� pair into single-mode
fibers and to deliver each one to a separate party for encod-
ing or decoding. For successful distribution over long dis-
tances it is vital to have a high rate of pairs generated at the
source, as the attenuation of the fiber is a strongly limiting
factor even at the wavelength of 1550 nm for which the fiber
is most transparent. Today, results with crystals of periodi-

cally poled materials have proved this viable even at moder-
ate pump laser powers �8�, and in some cases the problem
has turned into a matter of limiting the pump power to avoid
creating two pairs at the same time, as this will give false
coincidences also when having low single-coupling efficien-
cies. Instead, what has gained importance is to have a high
pair-coupling efficiency that increases the probability of both
photons of a pair being present in the fibers once they have
been created. Furthermore, the use of time-multiplexed
schemes �9,10� have elicited the need of launching photons
having very narrow frequency bandwidth and long coherence
length in order to limit the effects of dispersion in the fibers,
and to enable the use of interferometers. Rather than just
filtering the emission at some desired width, as is commonly
done, we will show that it is more efficient in terms of
photon-rates to design the source so that the bandwidth is
determined by the crystal length and fiber coupling alone.

It is the purpose of this article to calculate the maximum
coupling efficiency achievable for photon pairs generated in
crystals that are phase-matched for colinear emission in gen-
eral, and for periodically poled KTiOPO4 �PPKTP� crystals
using non-degenerate quasi-phase matching �QPM� in par-
ticular. We look for the optimal condition for focusing of the
pump onto the crystal and focusing of the emission onto the
fiber-end �mode-matching� which maximizes either the
single or the pair-coupling efficiency. The focusing is speci-
fied using the parameter �=L /zR, adopted from �11� with a
slight modification, where L is the length of the crystal and
zR is the Rayleigh range. We make no thin-crystal approxi-
mations, but take fully into account the focusing geometry of
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all three interacting fields: pump, signal, and idler, by de-
composing all three fields into a complete set of orthogonal
plane-wave modes. Other optimizable parameters of these
beams include the direction of the beam axis and the location
of the focus. Both are regarded fixed, the former being mo-
tivated by the colinear geometry of perfect quasi-phase
matching, and the latter by the fact that focusing onto the
center of the crystal shows to give highest efficiencies. �Sup-
port for the last claim is given in �12� for second harmonic
generation.� We also regard the center frequency of the
beams, the power of the pump, and the optical properties of
the crystal as fixed parameters of the problem. We take into
account the polychromatic character of the emission but as-
sume a monochromatic pump �continuous-wave pump�, and
we investigate how the coupling efficiency depends on the
length of the crystal and the bandwidth of the wavelength
filter in front of the fiber, but also how the fiber coupling
affects the bandwidth of the coupled photons and the achiev-
able photon-rates. Our goal is to give a simple recipe for
setting up a colinear source of entangled photon pairs that
optimizes the focusing for the highest single and pair cou-
pling efficiencies into single mode fibers, and that also deter-
mines a suitable crystal length for a desired bandwidth.

Shortly after the demonstration of parametric generation
�PG� and second harmonic generation �SHG� in the 1960s,
Boyd and Kleinman �11�, and others, addressed the focusing
in non-colinear geometries of type-I and showed the impor-
tance of optimization for achieving maximal conversion ef-
ficiency in optical parametric oscillators and frequency dou-
blers. By using cavities to enhance the processes one can
control the spatial mode of the pump, signal and idler to
support only the fundamental TEM00 mode, and under this
condition Boyd and Kleinman suggested that the general op-
timal focusing is to set the �-parameters of all fields the same
��p=�s=�i�. Later, Guha et al. �13� showed that having un-

equal parameters can improve the conversion even further
and this is also supported by our results. The case of type-II
SHG have also been studied �14�, as well as sum- and dif-
ference frequency generation �SFG and DFG� �15�, with
similar results. These works were all treating the light as a
classical field, having the signal beam acting as the relatively
strong control-field that is being amplified by the much
stronger pump-beam together with the creation of an idler. It
is not unreasonable to expect that a different situation arises
at the quantum level where both the signal and idler initially
are in uncontrolled vacuum-states.

Spontaneous parametric downconversion commonly takes
place in bulk crystal configurations where the signal and
idler modes are not restricted by cavities. This will provide
an additional degree of freedom. The pump is assumed to be
TEM00, but the emission will in general be spatially multi-
mode. A central problem in this article is to find how much
of the emission is in a transverse and longitudinal fundamen-
tal single-mode at different focusing conditions. For the
transverse part, such a single-mode, being Gaussian shaped,
is very close to the Bessel function of the first kind, J0���,
which describes the shape of the fundamental fiber mode,
and will therefore provide nearly perfect overlap. After de-
termining the mode of the emission we also calculate the M2

factor, commonly used as a measure of beam-quality, and

compare it to experimentally obtained results.
To our knowledge, no analysis has been made to date that

characterizes the colinear emission in quasi-phase-matched
materials in the way presented here, i.e., making no assump-
tions about short crystals or weak focusing. It should be
noted that the analytical calculations become difficult with-
out these assumptions and so our goal have been to formu-
late the final expression in such a way that it can be evalu-
ated numerically with relative ease, with only simple
assumptions being made. Taking into account all the needed
degrees of freedom—azimuthal and polar angular spectrum
and frequency included—these numerical computations will
become quite time-consuming on an ordinary personal com-
puter, but still doable.

Various other attempts have been made in the past to char-
acterize the one- and two-photon spatial optical modes gen-
erated by non-colinear birefringent phase-matching. How-
ever, most of them do not use single-mode fibers to collect
photons; Monken et al. �16� and Pittman et al. �17� show
how focusing of the pump with a lens can increase the coin-
cidence counts using an analysis limited to thin crystals, and
Aichele et al. �18� seek to match the spatio-temporal mode of
a conditionally prepared photon to a classical wave by spec-
trally and spatially filtering the trigger, however, without
considering focusing effects.

More recent work connected to ours is a number of papers
that consider the coupling into single-mode fibers; Kurtsiefer
et al. �19� provide, for thin crystals, a hands-on method of
determining the mode of the emission using the relation be-
tween the emission-angle and the wavelength coming from
the phase-matching conditions. For maximal overlap be-
tween the emission mode and the fiber-matched mode �tar-
get� they presume it is best to choose the waist of the pump-
mode and fiber-matched mode equal. According to �11�, and
our results, this is not optimal in general. Bovino et al. �20�
take on a more sophisticated approach as they carry out the
biphoton-state calculation for a non-colinear source, which
takes into account focusing, dispersion, and walk-off and ar-
rives at a closed expression for the coincidence efficiency.
Other work have been continued along the same lines �21�;
our conclusion from examining the formulas herein being
that high efficiency can always be achieved for any length of
crystal by choosing the pump waist large enough and the
fiber-matched waist small enough. This is in contrary to our
results which show an optimal value of the focusing param-
eter �1���3�. Furthermore, as shown both in this report

and in �11�, for a specific crystal type and wavelength con-
figuration the value of � is found to be a fixed constant for all
crystal lengths which makes the pump-beam waist w0 relate
to the length as w0��L �at optimal focusing�, while the re-
sults of Refs. �20,21� appear to show a linear relationship.
We are not sure whether these apparent differences are best
explained by the different situations of a non-colinear and
colinear source, pulsed vs. continuous-wave pump, or by
otherwise different models or parameters in either case. It
can be noted that our results seem to provide good agreement
with experiments.

The particular source of photon pairs that spurred the
work of this article is presented by Pelton et al. in Ref. �22�.
The main idea is to create polarization-entangled photon
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pairs at the non-degenerate wavelengths of 810 nm and
1550 nm from a pump-photon at 532 nm, using two orthogo-
nally oriented �23�, long, bulk KTP crystals. These crystals
are periodically poled for quasi-phase matching which pro-
vides colinear emission suitable for coupling into single-
mode fibers, but as told, also require some optimization for
maximum throughput. Preliminary results can be found in
�24�. Related work is found in �6,25,26�.

The agenda of this article is as follows. Section II gives a
mathematical background, starting in subsection II A with a
review of the one and two-photon state of the emission de-
rived in Appendix A. In Sec. II B we calculate the emitted
modes, which are qualitatively measured using the beam
quality parameter M2. This is followed in subsection II C by
a mathematical definition of the single-coupling, coinci-
dence, and pair-coupling efficiencies. Section III presents the
numerical results of the coupling �III A-III B�, bandwidth �III
C�, and the M2 factor �III D�. Section IV covers the experi-
mental setup and the experimental results, where a compari-
son is made to numerical predictions. Conclusions are found
in Sec. V.

II. THEORETICAL DESCRIPTION

The aim of this section is to derive the formulas used for
the numerical calculations of the emission modes, coupling
efficiencies, and emission bandwidths for the emitted quan-
tum state of the SPDC process, and also to give a physical
meaning to these concepts in the role of single photon
sources. We will optimize over the spatial parameters in-
volved to find the highest quality modes and maximal cou-
pling efficiencies attainable. The result is based on a calcu-
lation carried out in Appendix A involving the Hamiltonian
that governs the interaction of spontaneous parametric down-
conversion in quasi-phase-matched materials. The crystal is
pumped by monochromatic and continuous wave laser light
�p� of frequency �p, which is propagating in a Gaussian
TEM00 mode along the z-axis, producing a signal �s� and
idler �i� field in the same direction. Figure 1 defines the labo-
ratory axes used; the z-axis being along the length L of the
crystal, the x-axis along the height, and the y-axis along the
width. The crystal is bi-axial, and the crystal axes X, Y, and
Z are oriented as shown in the figure. We have chosen the

poling period in the crystal to allow for copolarized �ZpZsZi�,
colinear down-conversion, but the calculations are general
enough to allow other polarization settings. The refractive
indices, and thus the phase-matching, depends on the tem-
perature of the crystal and is determined by the Sellmeier
coefficients of PPKTP �27,28�. In general we are interested
in phase-matching at non-degenerate wavelengths, and for
such cases the shorter wavelength will be regarded as the
signal and the longer wavelength as the idler.

Many references, following Klyshko �29�, start with the
coupled mode equations and look at the evolution of opera-
tors to find the two-photon state from SPDC in terms of a
frequency and angular intensity distribution �30�. This is ef-
fectively the same as finding the diagonal elements of the
second order moment density matrix which represent the in-
coherent part of the information of the state. This informa-
tion is sufficient for determining the shape of the emission.
However, it is not sufficient for determining the overlap be-
tween the emission and a single-mode fiber. In this case we
need the “coherent” information available in the full density
matrix. The approach we take in Appendix A and in the next
subsection is to use the Schrödinger picture and look at evo-
lution of the state to find the two-photon amplitude. In the
following subsections we then diagonalize the corresponding
density matrix into a sum of coherent parts �eigenmodes�,
and project each one onto the fiber-mode so that we can
calculate the coupling efficiency as a sum of overlap coeffi-
cients. We also use this decomposition to calculate the elec-
trical field and beam profile of the emission.

A. The emitted two-photon state

The two-photon amplitude describes the joint state of the
signal and idler emission in terms of �internal� angular and
frequency spectrum. Using spherical coordinates �see Fig. 1�
the two-photon amplitude derived in Eq. �A28� becomes

S��,	s,	i,
�� =
4�22f1L

i�
A2���

�
kp

Zw0p

�2�
e−�kp

Z
w0p�2�P2+Q2�/4sinc�L

2

kz�	 ,

�1�

where, according to Eq. �A26�


kz� = ks cos 	s + ki cos 	i − kp
Z�1 − �P2 + Q2� + K , �2�

and, according to Eq. �A25�

P2 + Q2 =
ks

2 sin2 	s + ki
2 sin2 	i + 2kski sin 	s sin 	i cos�
��

�kp
Z�2

.

�3�

All three interacting fields have been decomposed into a
complete set of orthogonal plane-wave modes, k�	 ,��. The

magnitudes of the k-vectors, ks and ki, are given by Eq.
�A17�, 	s and 	i are the internal polar angles of the plane
waves of signal and idler respectively, 
� is the difference in
angle between the azimuthal angles �s and �i, and � is the

FIG. 1. The figure shows the periodically poled crystal with the

laboratory coordinate system drawn. Also defined are the crystal’s

axes X, Y, and Z, referring to the polarization of the incoming and

outgoing electromagnetic fields.
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frequency �specified by a single parameter due to exact
energy-matching�. Furthermore, 2 is the nonlinear coeffi-
cient of the crystal, K is the grating constant of the poling, L

is the length of the crystal, and w0p is the pump-beam waist
radius. A��� is the frequency amplitude of the detector filter

having a bandwidth 
� �FWHM� and a center wavelength �c

�all wavelengths in vacuum�. Via the relation �=2�c�n� /�

−n�c
/�c� its form, assuming a Gaussian shaped filter, is

given by

A��;�� = e−2 log�2��� − �c�2/
�2
. �4�

In a plane wave mode-decomposition, Eq. �1� represents
the two-photon field �that is generated in the crystal by the
pump field� in the form of a continuous angular spectrum in
polar and azimuthal degrees of freedom. Together with the
frequency, the full state is a tensor-product of four degrees of
freedom. We will need to discretize the spectrum in order to
represent it on a computer. As the size of the Hilbert space of
the full ket-vector becomes very large for a large number of
points in resolution, we need to limit its size to make the
numerical calculations feasible. In the following, the two-
photon state is therefore explicitly represented only by the
polar angles of the signal, �	s
, and the idler, �	i
, written as
kets, leaving the state implicitly dependent upon the two re-
maining degrees of freedom, 
� and �. The purpose of this
notation is to reflect the actual way that the state is numeri-
cally implemented as a one-dimensional array of 	 �the den-
sity matrix is a two-dimensional array�, with separate arrays
being calculated for each discrete value 
� and �. Choosing
N	 discrete plane-wave modes as a basis of the polar angle,
the two-photon state can then be formulated as

��si

�,�
 = �

m,n=1

N	

S��,	s
�m�,	i

�n�,
���	s
�m�
 � �	i

�n�
 . �5�

There are a few approximations that have been made dur-
ing the calculation of S, apart from the paraxial approxima-
tion inherent in the standard form of the angular spectrum
representation of the Gaussian pump field of Eq. �A19�.
These include �i� the assumption of a constant pump k-vector
magnitude kp=kp

Z in order to remove the implicit dependence
of 	p and �p in Eq. �A16�, which thus leads to Eq. �3�, �ii� the
assumption of an infinite coherence length of the pump �cw�,
providing a �-function over frequency so that we can de-
scribe the signal and idler by a single frequency �, and �iii�
the assumption of having the same refractive indices along
the crystal’s X and Y axis, such that the X-component of the
k-vectors can be set to the same as that of Y. The last as-
sumption also provides a motivation for the output of com-
pletely rotationally symmetric modes, and will greatly sim-
plify the expressions and the numerical calculations as the
azimuthal angle dependence, via �s and �i, is automatically
removed from the two-photon amplitude. The two-photon
density matrix is given by

�si

�,� = ��si


�,�
��si

�,�� , �6�

which now contains four degrees of freedom; 	s and 	i being
the two state parameters, and 
�, � being two other param-
eters which we will trace over later. Note that �si is a descrip-

tion of the emission inside the crystal, not taking into ac-
count the refraction between crystal and air.

B. The emission modes and the beam quality, M2

We are interested in the shape of the signal or idler beam
profiles using free detection so that we can compare with
images taken by a CCD camera. To do this comparison we
need to have the beam described in terms of the electrical
field, which is given as the Fourier transform of the angular
spectrum �the density matrix�. The electrical field, or inten-
sity, then gives the beam profile which, in turn, determines
the M2 factor.

First, each signal or idler beam are made independent of
the other beam by partially tracing over its partner. In the
following we trace over the signal in the polar angle degree
of freedom, and in doing so we get the reduced density ma-
trix for the idler,

�i

�,� = Trs��si


�,�� = �
n

N	

�	s
�n���si


�,��	s
�n�
 . �7�

The remaining dependence on 
� can also be removed fol-
lowing the standard trace-operation, which is here equivalent
to a sum over density matrices,

�i
� = Tr
���i


�,�� = �
m

N�

�i

�m,�. �8�

Additionally, as we could in principle measure the frequency
of the photons at a resolution given by 
�res=�2 /c
tgate �set
by the timing information of the detectors, �1 ns, to be
�8 pm�, which generally is much smaller than the band-
widths of the filters, we need to incoherently sum over the
frequency � in the same way, giving a final �i describing the
state of the idler,

�i = Tr���i
�� = �

n

N�

�i
�n. �9�

1. Mode decomposition

We cannot, however, directly now apply a Fourier trans-
form to the reduced density matrix �i, as it is generally
mixed. Instead, we shall diagonalize �i to find its eigenvec-
tors and eigenvalues. For such a Hermitian matrix all eigen-
values are real and the eigenvectors will form a complete
orthonormal set. Thence, the set will represent a natural
mode-decomposition of the emission, and consequently, each
vector, or mode, will represent a coherent part of the emis-
sion. The sum of all modes weighted by its corresponding
eigenvalue will determine the state. For each such mode, on
the other hand, we can apply a Fourier transform and thus
find the electrical field modes. The squared sum of all elec-
trical field modes, again weighed by the corresponding ei-
genvalue, will then determine the total electrical field. We
will quantify this to show our future notation; the reduced
density matrix is first diagonalized by T−1�T=D, such that
T= ���1
 , ��2
 , . . . , ��N	


� has the eigenvectors in the columns,
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and D has the eigenvalues �n in its diagonal elements. The
result is a density matrix that can be represented as a sum of
pure states,

� = �
n=1

N	

�n��n
��n� , �10�

where N	 is the Hilbert-space dimension. Following this re-
sult, in Fig. 2 is plotted the one-dimensional angular spectral
form u�	y�, taken as an integration of the absolute square of

the two-dimensional angular spectral amplitude axy�	�. We

have axy�	�=�n�n�n�	�, where �n�	� is the discrete function

representation of ��n
, and 	2=	x
2+	y

2. Hence,

u�	y� = �
	x

�axy��	x
2 + 	y

2��2, �11�

is the one-dimensional angular spectral form.

2. The field intensity

We can now transform the angular spectrum modes ��n
,
into electrical field modes En. As these modes are rotation-
ally symmetric and depend on one parameter only, the elec-
trical field is most suitably expressed through the Hankel
transform. In writing the transform in the following form we
make use of the fact that the vector ��n
, again written as a
discrete function, �n�	 ,��=�n�	�, is independent of �. Thus,

En�x,y,z� = �
	

�n�n�	�e−ikz cos 	J0�k�x2 + y2	� , �12�

where the basis functions J0��� of the Hankel transform are

the Bessel function of zero order and the solution to
�1/2��0

2� exp�i� cos ��d�. However, the one-dimensional

fast Hankel transform �FHT�, which would possibly provide
very fast computations, is not widely implemented, at least

not in an efficient form for use in Matlab or Mathematica and
was not available to us at the time for the numerical calcu-
lations. Therefore, the next simplest transform at hand is the
two-dimensional Fourier transform,

En�x,y,z� = �
	

�
�

�n�n�	,��e−ikz cos 	

� ekx sin 	 cos �eky sin 	 sin �. �13�

With still two dimensions being used, Eq. �13� can also be
rewritten using the polar angle components 	x and 	y,

En�x,y,z� = �
	x

�
	y

�n�n��	x
2 + 	y

2�e−ikz cos��	x
2
+	y

2�

� ekx sin 	xeky sin 	y , �14�

where 	=�	x
2+	y

2. In this form, which is the form we will
use, Eq. �14� represents a standard single two-dimensional
FFT. Note that this transform is, in general, not separable
with respect to x and y into two, but simple, one-dimensional
transforms. This is a characteristic of Laguerre-Gaussian
modes and of the modes emitted by the crystal, in compari-
son to Hermite-Gaussian modes which are always separable.

The intensity is now given by incoherently summing all
field-modes,

I�x,y,z� = �
n=1

N	

�En�x,y,z��2. �15�

Finally, the transversely integrated intensity profile of the
emitted beam is given by I�y ,z�=�xI�x ,y ,z�.

3. Gaussian beam fitting

The beam waist radius w�z� can be found from the stan-

dard deviation ��z�, or the second moment, of the intensity

distribution I�y ,z�, as w�z�=2��z�, see Ref. �31�. The stan-

dard deviation is known to provide the correct waist estimate
for arbitrary multimode light as opposed to trying to make a
curve-fit with various mode-shapes. Readily, �2�z�=�y�y
− ȳ�z��2I�y ,z�, where ȳ�z�=�yyI�y ,z� is the expectation value

with respect to the spatial position y in the intensity distri-
bution. As said, we will use the beam quality factor M2 to
quantify the emission. This factor is determined through the
Rayleigh range

zR =
�w0

2

M2�
, �16�

entering the standard Gaussian beam formula

wmodel�z� = w0�1 + � z − z0

zR

�2

. �17�

By varying the parameters w0 and M2 we can make a curve-
fitting of the model profile wmodel�z� to the actual beam pro-

file w�z�, such that the M2-factor is determined. Eq. �16�
states that the diffraction limited fundamental Gaussian
mode TEM00 has a beam quality factor of M2=1. As a com-
parison, this factor increases for general higher order
Laguerre-Gaussian modes LGpm �32�, defined by the radial

FIG. 2. The figure shows an example of the angular spectral

form u�	y� of the emitted idler light att 1550 nm in a PPKTP crystal

�central curve� which gives an M2 factor less than 3 with a filter

bandwidth 
�=10 nm. The pump at 532 nm is focused close to

optimal, �p=1.3. The insets show the four lowest order LGp0 modes

which are similar, but never the same as the natural eigenmodes of

the emission, and illustrates how the M2 factor in general grows

with mode order.
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index p and the azimuthal mode index m=0, such that M2

=3 for p=1, M2=5 for p=2, and M2=7 for p=3 and so on,
see Fig. 2.

C. Single coupling, coincidence, and pair coupling

To characterize the source and to optimize the coupling of
the emission into optical fibers we shall make use of three
parameters: single coupling, conditional coincidence, and
pair coupling. However, before we define each of the three
coupling parameters we shall briefly comment on the neces-
sity to relate them to the detection window being used, i.e.,
the frequency bandwidth of the detector filter 
�. The emis-
sion will always fluoresce in a wide spectrum, and in that
sense there is no meaning to speak about a coupling effi-
ciency for photons that cannot be seen through the window
in any case. By making a simple normalization to the filter
bandwidth, the coupling probability will consistently mea-
sure only how well photons of specific frequencies are spa-
tially collected into the fibers. For example, for any fixed
filter and no spatial filtering, as is almost the case with a
multimode fiber, and certainly the case in free-space, the
coupling is always perfect. Effectively, this normalization
enters the calculations through the bandwidth in Eq. �4�. Fig-
ure 3 helps to illustrate the different coupling parameters
using a Venn diagram.

1. Single coupling

The single-coupling efficiencies �s and �i are readily de-
fined as the probability to find a photon in the fiber which
has been emitted within a certain filter bandwidth. The
single-coupling efficiency is useful when maximizing the in-
dividual rate of photons present in the fibers. To calculate the
probability we shall take the overlap of the emitted modes
with the mode of the fiber as seen from the crystal, here
called the fiber-matched mode. That is to say, the form of the
mode that can be traced back to the crystal from the fiber tip,
not worrying about crystal refraction or any other optics in
between performing the actual transformation. Also, we do
not consider any additional aperture limitations enforced,
e.g., by irises.

The true mode of the fiber is described by a Bessel func-
tion. However, it can be approximated very well with a fun-

damental Gaussian which in normalized form is described by

�G00
 =
kZw00

�2�
e−ikZz00 cos�	�−�kZw00�2 sin2�	�/4�	
 , �18�

where w00 is the beam waist radius of the fiber-matched
mode, TEM00, as determined by the focusing system, and z00

is the location of the corresponding focus �which shall be at
the center of the crystal z00=0 for optimum coupling�, see
Fig. 4.

The single-coupling efficiency is trivially given by �
=Tr��G00
�G00���, but the numerical optimization converges

slowly and badly using this form. For this reason we shall
exploit the diagonalization and calculate the single coupling
efficiency as the sum of the projection of each emitted mode
��n
 onto the fiber-matched mode �G00
,

� = �
n=1

N	

�n���n�G00
�
2, �19�

where ��n
 is given by the density matrix, �s or �i, as defined
by Eq. �10�, resulting in �s or �i respectively.

2. Optimization

The maximum achievable coupling efficiency is deter-
mined by an optimization of Eq. �19� with respect to the
focusing conditions of either the pump mode, or the fiber-
matched signal/idler mode, or both. To quantify the focusing
we shall use the beam focusing parameter �=L /zR, where L

is the length of the crystal and zR is the Rayleigh-range �note
that we have M2=1 for both the pump mode and the fiber-
matched modes�. See Fig. 4. The parameter is suitable as a
dimensionless representation of the focusing geometry. �As
will be shown further ahead, the results indeed show that the
geometry is kept intact at optimal focusing, irrespectively of
the length of the crystal, which corresponds to a fixed �opt�.
In both Eq. �1� and Eq. �18� the parameter � enters through
the beam waist radius of the pump mode w0p and the signal/
idler fiber-matched mode w00, according to w0p=�L�p /��p,
and w00=�L�s,i /��s,i. We can formalize the optimization of
the signal and idler fiber-matched modes as

�opt = max
�s,i

���p,�s,i� , �20a�

FIG. 3. The figure shows a Venn diagram. It illustrates the single

coupling efficiencies �s and �i, pair coupling �c, and conditional

coincidences �s�i and �i�s, which are defined in the text. The total

amount of pairs �p generated within the bandwidth of the detector

filter 
� is normalized to unity, and represents perfect coupling.

FIG. 4. The picture shows the geometry of focusing, with the

Rayleigh-range zR, the crystal length L, the beam waist radius w0,

and the focus offset z0 being defined. The focusing parameter is

defined as �=L /zR.
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�opt = arg max
�s,i

���p,�s,i� , �20b�

with � given by Eq. �19�.

3. Conditional coincidence

The conditional coincidences, �s�i and �i�s are useful for
the characterization of heralded single photon sources, and
are defined as the probability to find a photon in either the
signal or the idler fiber given that the partner photon has
entered its fiber, whether or not its detected. The conditional
coincidence probability is found by first projecting the two-
photon amplitude onto the one fiber, and then calculating the
overlap with the other fiber in the same way as for single
coupling. In this example we will search for �i�s and make a
conditional measurement on the signal, defined by the fol-
lowing operator

Ms = �G00
�s�
�G00

�s�� . �21�

Due to the measurement, the derivation of �i will be slightly
different here, and we need to take a few steps back and
reformulate the two-photon density matrix �si

� as a coherent
sum of amplitudes with respect to 
�, instead of as a inco-
herent trace operation in Eq. �8�. The density matrix is now
written

�si
� = �

m

�
l

��si

�m,�
��si


�l,�� . �22�

Using the measurement operator Ms, the two-photon density
matrix after the projection becomes

�si�s
� =

Ms � 1i�si
�Ms � 1i

Tr�Ms � 1i�si
�Ms � 1i�

. �23�

The reduced density matrix is readily found by tracing over
the partner, �i�s

� =Trs��si�s
� �, which leaves only a trace over

frequency, �i�s=�n�i�s
�n. The conditional coincidence is now

defined in the same way as for single coupling; we can re-
place � by �i�s in Eq. �19�, still using Eq. �10� to find the
eigenvalues �n and eigenmodes ��n
 of �i�s. We have,

�i�s = �
n=1

N	

�n���n�G00
�i�
�2, �24�

where �G00
�i�
 is the fiber-matched mode of the idler. The pa-

rameter �s�i follows accordingly, as well as the formal opti-
mization:

�opt = max
�s,i

���p,�s,i� , �25a�

�opt = arg max
�s,i

���p,�s,i� . �25b�

4. Pair coupling

Finally, the pair-coupling efficiency �c is defined as the
probability to find both photons of a pair in the respective
fiber. This measure tells what fraction of the pairs enters the
fibers compared to the total amount of pairs that are gener-

ated within the frequency bandwidth window. The pair-
coupling can be derived from the single coupling and condi-
tional coincidence using effectively Bayes’s rule, see Fig. 3,

�c = �i�s�s = �s�i�i. �26�

The alternative is to calculate the coupling via �c=Tr�Ms

� Mi�si�, but this requires the calculation of �si, which is

computationally more demanding. When computing �i�s and
�s via Eq. �26�, using Eq. �24� and Eq. �19�, the ket is suffi-
cient, because we can simplify the trace-operation of Eq. �7�,
and also the projection of Eq. �23�, to work in ket-space
before the trace over frequency; �i

�=Trs��si
� �

=�m,n,jSm,jSn,j
* �	i

�m�
�	i
�n��. We could also think of rewriting

Tr�Ms � Mi�si� using two-photon kets in the same way, but as

�si generally becomes a mixture after tracing over frequency
this is not an option. To compute �c before the frequency
trace is also not an option numerically, as the trace over
frequency involves a for-loop and optimization performed
within it will reduce efficiency heavily.

The measure �c should be compared to ���c /��s�i

=��s�i�i�s, which is basically �c normalized to �s and �i, that
have been used by some authors �20,21�. The parameter � is
useful as a type of measure of correlation that tells how well
the focusing system has been set up to couple the modes of
the idler emission to the same as those conditioned by the
signal emission, or vice versa, depending on which of the
two possess the smaller single-coupling efficiency. We intend
to simply plot �c as this compares directly to �s and �i in
terms of achievable photon rates; in principle, �c could be
low while � is high.

III. NUMERICAL PREDICTIONS

All results in this section are for the case of a PPKTP
crystal with the poling period �=2� /K=9.6 �m operating
at perfect quasi-phase matching; the pump at 532 nm creates
emission at 810 nm and 1550 nm in the absolute forward
direction. The temperature T=111 °C, which affects the
k-vector magnitudes, is chosen such that kp=ks+ki+K, see
Ref. �22�.

The numerical calculations are implemented in Matlab us-
ing Eq. �1�–�3�. All refractive indices are determined by the
Sellmeier equations �27,28�, setting the wavelength and tem-
perature dependence of the k-vector magnitudes. The resolu-
tion N	 of the discrete angular spectral amplitude represen-
tation in the polar degree are a few hundred points and varies
between 1–100 �radians, with the higher resolution for
short crystals and strong focusing �wide-spread emission�
and the lower resolution for long crystals and weak focusing
�narrow emission�. The needed azimuthal angle resolution
N� is found to be �N	 /5, and the frequency resolution N�
varies between a few points for short crystals to a few hun-
dred points for long crystals where the spectrally induced
contribution to spatial multimode is larger. To spare the com-
puter from unnecessary workload we observe that the two-
photon density-matrix in Eq. �6� �scaling as N	

2 number of
points in size� is always pure and can be fully represented by
its amplitude vector alone �scaling as N	�, for all of the cal-
culations.
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A. Single coupling

As said earlier, according to our definition the single-
coupling efficiency depends on the emission bandwidth filter
that is being used. This is because of the fact that many of
the different frequencies created in the SPDC process will
not couple into a single-mode fiber. Looking at a single fre-
quency of the emission, the angular spectrum of the emission
will be described by a single sinc-function for each of the
plane waves of the pump, see Eq. �1�. As will be argued in
the next subsection, most of these sinc-functions will overlap
nearly perfectly at optimal pump-focusing such that the
emission is strongly spatially coherent and define almost a
single-mode that will couple well into a single-mode fiber. If
the pump-focusing is too weak it will create transverse mul-
timode emission, as the many sinc-functions are then distrib-
uted along the transverse position of the pump beam and do
not coincide. If the pump is instead focused too strongly the
effect is the same, except that the multimode now originates
from longitudinal position, also providing bad coupling. This
is the general picture using the window of a single emission
frequency.

If we look at a wide spectrum of the emission, each of the
different frequencies can be seen as composed by a set of
sinc-functions, each set in a different direction, and with ev-
ery sinc in a set coming from one plane wave in the decom-
position of the pump. For long crystals, when the width of
the sinc-functions narrows down, the different sets of sinc-
functions will no longer overlap. Within each set the sinc-
functions are spatially well overlapping, thus defining a co-
herent single-mode, but as the sets do not overlap the
emission will become spectrally multimode similar to above,
also resulting in spatial multimode. This again provides poor
coupling efficiencies. However, coupling into fibers auto-
matically does some spatial filtering as it selects only the
coherent part of the emission defining a single-mode, i.e.,
sinc-functions largely overlapping, and thereby it also does
some frequency filtering. Altogether, this motivates why we
have looked at only a single frequency of the emission for
the results of the numerical calculations of the single cou-
pling efficiencies shown in Figs. 5–7. We will refer to this
case by saying that we have a “narrow enough” filter band-
width, 
�narrow, which maintains a single-mode at optimal
focusing of the pump and the signal and idler fibers, i.e. the
bandwidth is narrow enough that the different sinc-sets, cor-
responding to different frequencies, within the bandwidth
overlap �are coherent�. Frequency filtering effects, as those
just described, are left to the next section.

Figure 5 shows the single-coupling efficiency of the idler
�i plotted against the crystal length L and the focusing of the
pump-beam, via its waist w0p. For each sample in the plot,
the idler fiber focusing has been optimized using Eq. �20� to
find the maximum coupling �i

opt. As seen, there is always the
same maximal coupling to be found for any length of the
crystal by changing the pump-beam waist radius accordingly.
The straight lines show that the focusing parameters of both
the pump �p and the idler fiber focusing �i

opt are constant,
which means that the geometry of the beam profile and the
crystal edges should stay fixed for different lengths of the
crystal for optimal focusing. The said graph would look

nearly the same for the signal emission, and, taking a differ-
ent view of the results, Fig. 6 clearly shows the importance
of choosing the right combination of focusing for the pump
and for the fibers. Interestingly, we observe that as long as
the fiber focusing is matched to the pump focusing, for any
given length of the crystal, then the coupling efficiency will
reach �45% irrespectively of the pump focusing. This fact
may very well explain the relatively high efficiency never-
theless achived in many fiber-based SPDC-setups for which
the experimentalist perhaps have not worried about changing
the pump’s focusing, but rather solely the fiber coupling.

Figure 7 shows both the signal and idler coupling in a
graph that is parametrized by the pump focusing. In each
case the optimal fiber focusing is found, and plotted along

FIG. 5. �Color online� The single coupling of the idler �i
opt,

plotted for a narrow enough filter bandwidth, 
�narrow, which shows

that about 95% of the emission can be coupled into a single-mode

fiber at optimal focusing. The solid line shows the pump-focusing

parameter �p, and the dashed-dotted lines show the focusing of the

idler’s fiber-matched mode �i
opt. For each data sample the idler fo-

cusing has been optimized for maximum coupling using Eq. �20�.

FIG. 6. �Color online� The single coupling of the signal �s,

plotted for a narrow enough filter bandwidth, 
�narrow, which

reaches a maximal 98% at optimal focusing, �p=1.7 and �s=2.3.
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the horizontal axis. In this asymmetrical configuration it
leads to a maximal �s

opt=98% when optimizing the focusing
for the 810 nm emission ��p=1.7 and �s

opt=2.3�, and �i
opt

=93% for the 1550 nm emission ��p=0.9 and �i
opt=2.4�. The

optimal focusing of the pump depends on the amount of
non-degeneracy for each of the wavelengths, e.g., for the
degenerate case �1064 nm� the optimal focusing is �p=1.4

and �s,i
opt=2.3. It should be noted that, in general, the found

optimal focusing parameters do not correspond to a match of
the beam-waist sizes �19�, but rather to an equal geometry.
However, a matching of the waists are within the same order
of magnitude comparable to using optimal focusing param-
eters.

B. Coincidence and pair coupling

For any focusing of the pump-beam, the fundamental
modes of the signal and idler emission will be highly corre-
lated, meaning that, e.g., a signal photon that enters its fiber
will have its idler partner entering the other fiber, provided
correct fiber focusing. At optimal focusing of the pump-
beam, this correlation is always high if the partner beam is
focused optimally, independent of the focusing of the beam
that we condition upon. In other words, at optimal focusing
of the pump-beam the conditional coincidence �i�s, i.e., the
probability of having the idler photon in the fiber given that
the signal photon is in the fiber, will be mainly set only by its
single coupling probability �i, which is always at a high
value at optimal focusing due to the emission being mostly
single-mode, see Fig. 8. In contrast, because of the multi-
mode character of the emission at other pump-beam focusing
settings than optimal, a high conditional coincidence can, in
that case, only be attained near optimal focusing for both the
signal and idler fibers. Each sample in the plot has been
generated using Eq. �25� with a narrow filter, 
�narrow, at the
signal side, as defined earlier, and without a filter at the idler
side, when finding the maximum �i�s

opt that corresponds to
optimal focusing of the idler, �i

opt. As can be deduced from

the graph, the conditional coincidence is always very high,

reaching 100% for most weaker focusing conditions. When
instead using an idler frequency filter that is matched to the
signal filter, then �i�s will be bounded above by 71%, assum-
ing Gaussian shaped filters on both sides. This limitation
follows from the fact that while the signal photon of a given
pair may very well be transmitted through its filter, the idler
may not. Using Eq. �4�, the maximum number can be easily
derived from the normalized overlap integral
�As����

2�Ai����
2d� /�As����

2d�=1/�2, for which we note that

the result is independent of the bandwidth.
Additional qualitative results on the optimal joint focus-

ing can be found by turning to the pair coupling efficiency
�c. As opposed to �i�s, this measure relates to the total
amount of pairs that is generated, and not only to those con-
ditioned upon. As shown in Fig. 9, for optimal pump-beam
focusing, there is a maximal value of about 97% for �c at
�s=2.0 and �i=2.3. Note that, since the optimal pump-beam
focusing varies for each of the beams for a non-degenerate
wavelength case ��p=1.7 for signal and �p=0.9 for idler�, we
had to find a compromise using �p=1.3. This graph is again
plotted using a narrow filter at the signal and no filter at the
idler. Equation �26� tells us that for matched filters, �c will
also be limited to 71%, as long as �s=1 which is achievable
with narrow filters. In general, both the conditional coinci-
dence and the pair coupling decrease for wide bandwidths;
�i�s in such case being bounded above by 100% and �c

bounded above by the value of �s.
In terms of sources of heralded single photons, these re-

sults imply that almost perfect correlation can be achieved by
careful focusing and by having no limiting interference filter
on the triggered photon side; leaving such sources limited
entirely by the transmission imperfections of lenses and fil-
ters, and by detector efficiencies.

FIG. 7. �Color online� The single couplings, �i
opt and �s

opt,

reaches a maximum at �p=0.9 for the idler, and at �p=1.7 for the

signal, which corresponds to �i
opt=2.4 and �s

opt=2.3. The line repre-

senting the signal in this graph is essentially a plot of the ridge of

the surface in Fig. 6.

FIG. 8. �Color online� The conditional coincidence �i�s, plotted

versus the focusing of the pump �p and the focusing of the signal’s

fiber-matched mode �s. For each sample in the graph the focusing of

the idler ��i
opt=solid lines� is optimized to find the maximum �i�s

opt

�up to 100%�, using Eq. �25� with a narrow signal filter, 
�narrow,

and no idler filter.
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C. Photon-rate and bandwidth

In this subsection we will look at the achievable photon
fluxes in free-space and in single-mode fibers and its depen-
dence on the crystal length. As we will argue, and we have
shown numerically, this dependence will in turn depend on
the chosen frequency filter. Our arguments will follow a se-
ries of steps, where the later steps include the effects of
spatial and spectral filtering. The final results are found in
Fig. 10 and Fig. 11.

As a first step, imagine the pump beam to be a single
plane wave that is perfectly phase-matched for a single fre-

quency of the signal and the idler along the z-axis, called

here the forward direction. In this case, by looking at the

two-photon amplitude Eq. �1�, we see that the height of the

sinc-function, which describes the angular spectrum, is �L,

corresponding to an L2 dependence for the intensity �One

should imagine two-dimensional, ‘‘Mexican-hat-like’’, sinc-
functions�. The width of the sinc will shrink �1/L, such that
the flux will increase �L. This argument is still valid consid-
ering the spatial transverse multimode emission created by
such a plane wave pump, discussed earlier.

As a second step, consider a focused pump being com-
posed of many differently directed plane waves. In this case,
still looking at the same single frequency emitted, each such
plane wave will phase-match a little less strongly than the
one in the absolute forward direction. We will have a collec-
tion of sinc-functions being added together, each originating
from a different plane pump wave, and numerical calcula-
tions show that the combined total width, or envelope, of
these sinc-functions will decrease for longer crystals, thus
adding to the previous result a factor 1 /�L, with the flux now
becoming ��L.

The third step includes the observation that the energy of
the pump beam is concentrated to the plane wave in the
forward direction for longer crystals at optimal focusing.
Equation �1� shows that the intensity will be �w0p

2 , because,
at optimal focusing we have zR=L /�p, where zR is given by
Eq. �16�, and thus w0p

2 �L. The total flux is now �L�L.
As a last step we include filtering. In the previous steps

we looked at a single frequency of the emission, which
means that the bandwidth was narrow enough for the emis-
sion to be a single-mode �at optimal focusing�. For narrow
enough bandwidths we therefore get a flux

FIG. 9. �Color online� The pair coupling �c=�i�s�s at a pump

focusing of �p=1.3, which is trade-off between what is optimal for

the signal ��p=1.7� and the idler ��p=0.9� individually. At optimal

focusing, �s=2.0 and �i=2.3, the maximum �c is about 97%, using

a narrow signal filter, 
�narrow, and no idler filter.

FIG. 10. The fiber coupled bandwidth is �1/L for a wide

enough spectral filter 
�wide, see text, which can be said to be the

case for the solid line of 
�=25 nm for all crystal lengths defined

by the plot. In the limit of no filter at all, the graph corresponds to

the single-mode bandwidth 
�SM, see Eq. �28�. The graph shows

the result for the signal emission �810 nm� at optimal focusing con-

ditions, �p=1.7 and �s=2.4, and the legend shows what filter band-

width 
� was used for each line.

FIG. 11. The fiber photon flux is ��L for a wide enough filter


�wide, and �L�L for a narrow enough filter 
�narrow. The filter is

defined as narrow or wide in relation to the natural single-mode

bandwidth 
�SM. For the solid line of 
�=25 nm the case has been

reached where 
�=
�wide�
�SM. The graph shows the result for

the signal emission �810 nm� at optimal focusing conditions, �p

=1.7 and �s=2.4, and the legend shows what filter bandwidth 
�

was used for each line.
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P � L�L
�narrow, �27�

which is valid both in free-space and in fiber. As an effect of
the phase-matching conditions there will be a tight connec-
tion between the spectral and spatial modes, as we described
in Sec. III A for frequency filtering. In terms of fiber-
coupling this means that when the fiber spatially filters the
emission it will also effectively do frequency filtering. The
bandwidth of the signal emission �810 nm� coupled into

single-mode fibers �using no separate frequency filter� is
given by


�SM = B/L , �28�

where the value B=1.23�10−11 �m2� is found for PPKTP

when both the pump and fiber are focused optimally, see Fig.
10. We will refer to this bandwidth as the single-mode band-
width. It will also determine how narrow the bandwidth of a
filter �
�narrow�
�SM� need to be for any given length of

the crystal to be considered narrow. The photon flux in the
fiber will be

P � L�L
�SM = �L , �29�

for any filter 
��
�SM. In Fig. 11 we have plotted the flux
for different filters, 
�narrow�
�SM�
�wide. For filter
bandwidths that are “wide enough,” 
�wide, the free-space
emission will be multimode even at optimal pump focusing,
and the free-space photon flux becomes

P � �Lg�
�wide� , �30�

where g is some unknown and non-trivial function deter-
mined by the properties of the crystal material via the Sell-
meier equations.

These results clearly show that it is advantageous to have
long crystals as the photon-rate will always monotonically
increase even when coupling the emission into single-mode
fibers. As an effect, we can keep the pump power low, pro-
moting the use of a compact and cheap laser. This requires
that we change the focusing of both the pump �p and the
fibers �s,i to the optimal for some length L. Additionally,
longer crystals give narrower bandwidth, which is very ad-
vantageous in many applications of entangled photons. For
example, in time-multiplexed schemes it is crucial that the
photon packets keep their widths in the fibers and do not
broaden due to chromatic dispersion, and the broadening can
be limited by having a narrow bandwidth. Another way of
reducing the effect of broadening is by introducing negative
dispersion using an appropriatly designed fiber Bragg grat-
ing. In general these have to be custom manufactured for
broad bandwidths, but for telecom bandwidths, 30–80 GHz,
�in the C-band, between 1525–1562 nm� these are standard
off-the-shelf items, and corresponds to wavelength band-
widths of about 0.25–0.65 nm at 1550 nm. We can see from
Eq. �28� that 70–180 mm long crystals are needed, taking
into account the conversion factor between signal and idler
bandwidths �
�i= ��0i /�0p−1�2
�s�3.66�
�s�. Narrow

bandwidth can of course be obtained by the use of spectral
filters, however, our results show that it is better in terms of
photon-rates to use long crystals to achieve small bandwidths
rather than to strongly filter the emission of a short crystal.

�This is in contrast to what is claimed by Lee et al. in Ref.
�33�, for birefringent phase-matching and intersecting
cones.� Furthermore, with narrow bandwidth follows also
long coherence length of the photons which is highly desir-
able when working with interferometry as is commonly done
when using time-multiplexing analyzers to code and decode
qubits.

D. M2 and coupling

In this subsection we will present the numerical predic-
tions of the emission mode in terms of the beam quality
factor M2 for different focusing conditions. We will also
elaborate on the connection between the beam quality factor
and the coupling efficiency.

Figure 12 shows the beam quality factor Mi
2 plotted

against the focusing of the pump for a narrow enough fre-
quency bandwidth of the idler emission �
�narrow�
�SM�.
There is a clear optimal focusing, where the emission reaches
close to single-mode, Mi

2=1.4, at a focusing of �p=0.9.
These results are valid for any length of the crystal, compare
to Fig. 5. A low value of M2 means that the light is close to
a single-mode, and thus possible to couple well into a single-
mode fiber. For bandwidths larger than the single-mode
bandwidth 
�wide�
�SM, the light will become spatially
multimode and the coupling efficiency will decrease accord-
ingly.

Figure 13 shows the relation between the coupling effi-
ciency �i and the Mi

2, as the focusing �p of the pump is
varied. The correspondence is clear, and we can see that
different M2-values can provide the same coupling effi-
ciency. This is so because the coupling efficiency is only
determined by how much of the emission is in the fundamen-
tal mode. What determines the M2 is the distribution of the
light between the higher order modes, and this can differ
from one case to another, even with the same amount con-
tributing to the fundamental mode. In general, as we have
said, too weak focusing will provide spatial transverse mul-

FIG. 12. The beam quality factor M2 of the idler plotted against

the pump beam focusing �p. The smallest value, M2=1.4, is found

for �p=0.9
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timode, and too strong focusing will provide spatial longitu-
dinal multimode. It can be deduced from Fig. 13 that longi-
tudinal multimode, originating from too strong focusing,
creates emission with relatively higher contribution to the
fundamental mode for the same M2 value.

IV. EXPERIMENTAL RESULTS

To verify some of the numerical results we compared with
experiments. We have measured the beam quality factor, the
bandwidth in the fiber, and the coupling efficiencies for dif-
ferent focusing conditions of the pump. The experimental
setup is shown in Fig. 14. As a pump we use a frequency
doubled YAG laser emitting approximately 60 mW in the
TEM00 mode at 532 nm. Its Mp

2 value was measured to 1.06.
After a band-pass filter �BP532�, which removes any remain-
ing infrared light, we “clean up” the polarization using a
polarizing beam splitter �PBS�. The polarization is controlled
by a half wave plate �HWP� and a quarter wave plate �QWP�
in front of the crystal. The pump-beam is focused onto the
crystal using a achromatic doublet lens �fp=50 mm� which

introduces a minimal amount of aberrations not to destroy

the low M2 value. The QWP is set to undo any polarization
elliptisation effects caused by the lens, and fluorescence
caused by the same lens is removed by a Schott filter �KG5�.

The next component is the crystal. This is a periodically
poled, bulk 4.5 mm long KTP crystal, with a poling period of
�=9.6 �m, which will colinearly create a signal at 810 nm
and an idler at 1550 nm when heated in an oven to a tem-
perature T�100°. When the setup is used to create polariza-
tion entanglement, two crystals are present, one oriented for
V and one for H, and the polarization of the pump is set to
45°. By coupling the emission from both crystals into single-
mode fibers we cannot even in principle determine which
crystal the photons came from, except by their polarization
degree of freedom, and therefore the signal and idler will
interfere in the diagonal basis and get entangled in polariza-
tion. This principle was first demonstrated by Kwiat et al. in
Ref. �23�. Our first results was presented in Ref. �22�, and the
latest results, overcoming some problems of crystal disper-
sion and using optimal focusing, will be found in Ref. �34�.

After the crystal, we block the pump light by a 532 nm
band-stop filter, and the signal and idler emission is focused
by achromatic doublet lenses. The rather small F-number
�F= f /D, where f is the focal length and D is the beam di-
ameter� of the emitted light �F�40 for fp=50 mm and F

�9 for fp=12 mm� requires good quality lenses not to in-
crease the M2-factor. The lenses we use are all aberration
free down to F�6–11, and are also quite insensitive to an
offset in the alignment of the optical axis.

To determine the coupling efficiencies and bandwidths,
the complete setup of Fig. 14 was used. To separate the
810 nm and 1550 nm emission we used a dichroic mirror
made for a 45° angle of incidence. The first lens �fsi

=30 mm� is common to both signal and idler and its task is

to refocus the beams somewhere near the dichroic mirror.
The next two lenses �fs=60 mm and f i=40 mm� collimate
each beam, and they are focused into the fiber-tips �with the
mode field diameters being MFD810=5.5 �m and MFD1550

=10.4 �m� using aspherical lenses with f =11 mm. In front
of the fiber couplers we have first Schott filters �RG715� to
block any remaining pump light, and then interference filters
of 2 nm and 10 nm at the 810 nm and 1550 nm side respec-
tively �BP�. The detectors used were a Si-based APD �Perki-
nElmer SPCM-AQR-14� for 810 nm and a homemade
InxGa1−xAs-APD �Epitaxx� module for 1550 nm.

When determining the beam quality factor, M2, we used
only a single crystal oriented to create vertical �V� polarized
light, and the complete setup of Fig. 14 was also not used.
Instead, we focused the idler emission directly using a lens
of focal length f i=75 mm placed at a distance of 75 mm
from the V-crystal to collimate the beam. At the additional
distance of 470 mm we placed another lens with focal length
f i=150 mm that refocused the beam again, so that we could
take measurements of the beam profile around its waist.

A. M2 measurements, results

To obtain the results of Fig. 15 we first took images of the
refocused idler beam in the x-y plane using an InGaAs-
detector camera from Indigo Systems, model Alpha NIR.

FIG. 13. �Color online� The single coupling �i versus the M2 of

the idler, using the same data as in Fig. 12 and Fig. 7. The graph is

parametrized by the pump beam focusing and illustrate how a low

M2 is connected with a large �i.

FIG. 14. The experimental setup used to create polarization en-

tangled photon pairs, and to verify numerical results. PBS: polariz-

ing beam splitter; HWP: half wave plate; QWP: quarter wave plate;

SWP: short-pass filter; BP: band-pass filter; SMF: single-mode fi-

ber; �: detection efficiency.
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Several images were acquired for different positions along
the z-axis around the waist, and we then integrated the re-
sulting 2-dimensional surface over one axis to create an in-
tensity profile for the remaining axis. Because of the detector
noise we could not use the standard deviation method to find
the beam radius, defined by the 1/e2 level. Instead we
matched a Gaussian shaped function to the intensity profile
to find the width. This is accurate enough for mode-shapes
that are close to Gaussian, which is the case for low M2

values. To limit the impact of the noise we applied a function
that assigned greater weight to the center-values of the inten-
sity profile. The widths of the beam for each z-axis position
were then set together to find the beam profile of the emis-
sion, and its M2 factor was determined by fitting to the stan-
dard Gaussian-beam function, Eq. �17�. We now repeated the
procedure for different focal lengths, fp, of the pump lens:
12 mm, 30 mm, 50 mm, 75 mm, 100 mm, and 150 mm,
each being placed at a distance that set the focus in the center
of the crystal. The result, which is shown in Fig. 15, agrees
fairly well with the numerical predictions. The shortest focal
length lens, 12 mm, gave a somewhat higher M2, which can
be explained by the fact that this was the only singlet lens
used, probably adding some aberrations, while the others
where achromatic doublets. The lowest value, Mi

2=2.8, was
found with the 50 mm lens giving a 14 �m pump waist ra-
dius w0p inside the crystal, corresponding to �p=2 for the
4.5 mm long V-crystal �for later reference we observe that
�p=1.3 for L=3 mm agrees a little bit better with numerical
results�. Note that the M2 values are slightly higher here
compared to Fig. 12. This can be explained by the non-
perfect phase-matching in the experimental case, resulting
from either too low crystal temperature, uncertainty in the
true value of the poling period �possibly deviating somewhat
from its specification�, or both.

B. Coupling efficiencies, results

The experimental data for the coupling efficiencies were
obtained with the source producing polarization-

entanglement using two crystals. For this reason we expect
the values to be a bit lower than predicted as we needed to
focus the fiber-matched modes for both the H and the V
crystal at the same time. We also have this problem with the
pump beam, and we aimed at placing the focus at the inter-
secting faces of the two crystals for both the pump and the
fiber. As already mentioned, the temperature of the crystal
used in the experiment was set lower than required for abso-
lute perfect phase matching at 810 nm and 1550 nm. This
was because we observed higher photon fluxes at this setting.
Contradictory as it may seem, the explanation is that the
peak of the emission spectrum is not symmetrically centered
around the above wavelengths, but rather towards 810−�
and 1550+�, including a long tail representing the emission
at larger angles. As our filters are centered for 810 nm and
1550 nm, the peaks of the emission can be moved to line up
with these by changing the temperature, and thus the phase-
matching, which will give somewhat higher fluxes although
the coupling efficiencies will decrease according to our defi-
nitions. In addition to having a slightly wrong poling period
these effects degrades the efficiencies, which we could verify
numerically and which is supported by comparing Fig. 15
and Fig. 12. The obtained results for the single coupling
efficiencies were �s=32% and �i=79%, for the conditional
coincidence �i�s=34%, and for the pair coupling �c=11%,
when focusing according to �p=2.1, �s=3.2, and �i=2.5 �as
decided by available lenses, and assuming L=4.5 mm�. For
these numbers we have compensated for the 35% transmis-
sion of the 1550 nm filter, and the 85% transmission of the
810 nm filter. The singles photon rate in the signal fiber was
2.3 Mcps �106 counts/ sec� and in the idler fiber 2.4 Mcps.
The total generated rate of photons before fiber coupling was
estimated at 8.6 Mcps and the coincidence rate in the fibers
was 274 kcps, �see Ref. �34��.

C. Bandwidth, results

We have used a spectrograph �SpectraPro 500i, ARC� to
measure the bandwidth of the signal emission using the
single-mode fiber without a filter. The bandwidth was 4 nm
for the V-crystal and 6 nm for the H-crystal. Fig. 10 suggests
that the effective length of the crystal being poled must be
3 mm and 2 mm respectively. Also, from Fig. 11, for the
2 nm filter, we can deduce that the 2 mm crystal should give
roughly 55% of the photon rate of that of the 3 mm one.
Experimental agreement is good, as we saw the H-crystal
giving half the rate of the V-crystal �with no compensation
done by balancing the fiber coupling or rotating the pump
polarization�. Referring again to Fig. 15 using the effective
crystal length, the best pump beam focusing parameter is
modified to �p=1.3 for L=3 mm �V-crystal� which agrees
roughly with the value of optimal focusing, �p=0.9.

V. CONCLUDING DISCUSSION

In summary, precise focusing of the pump-beam and the
fiber-matched modes can significantly increase the coupling
and coincidence efficiencies of quasi-phase matched SPDC-
sources, which is important for applications needing highly

FIG. 15. �Color online� The experimentally observed beam

quality factor, Mi
2, for the idler beam at different sizes of the pump

beam waist radius w0p. The lowest value of the Mi
2 is 2.8 at a

14 �m pump waist.
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correlated pairs of single photons to propagate in fibers. We

have shown how the beam quality factor of the emission

changes with the focusing of the pump. At optimal focusing
the emission is mostly created in a spatial single-mode,
which couples well into single-mode fibers, and by maintain-
ing a fixed geometry of the beam profile in relation to differ-
ent lengths of the crystal this stays true for all lengths. We
have also shown how the photon flux depends on the crystal
length for different frequency filters, the conclusion being
that longer crystals produce more photons per unit time at a
smaller bandwidth.

In all of the calculations we have assumed a monochro-
matic �CW� pump laser. Looking for a possible extension to
pulsed operation we observe that the interaction time, T, in
Eq. �A18� for a CW laser is set by the coherence time of the
pump alone, and as T is infinite it transforms into a delta-
function of frequency in Eq. �A20�. Using pulsed light, the
integral 0

T exp�−i
�t� should be replaced by −�
� h�t�exp�

−i
�t�, where h�t� is the convolution, h�t�=hC�t��hL�t�, be-

tween the form of the temporal wave-packet of the pump,
hC�t�, and the form of the crystal along the z-axis, hL�t�. We

observe that when hC�t� is narrow, like for pulsed operation,

the transform of h�t� will instead become a sinc-function,

specifying an inexact energy-matching condition. Prelimi-
nary numerical calculations then show increased M2-values
and decreased coupling efficiencies. However, due to the
characteristics of the convolution, it seems we can retain the
good results of CW even for pulsed operation by using very
long crystals, as this will bring back the delta-function at the
limit of infinitely long crystals. For this discussion we have
not yet worried about any dispersion effects that might come
with long crystals and short pump pulses.
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APPENDIX A: THE TWO-PHOTON FREQUENCY AND

ANGULAR SPECTRAL AMPLITUDE

The evolution of the number state vector is given by

��
 = exp�− i
1

�
�

t0

t0+T

dtĤ�t�	��00


� �1 +
1

i�
�

t0

t0+T

dtĤ�t����00
 , �A1�

where ��00
 is the state at time t0, T is the time of interaction,

and Ĥ�t� is the Hamiltonian

Ĥ�t� = �
V

�2�Êp
�+�Ês

�−�Êi
�−�d3r + H.c. �A2�

There are three interacting fields in the crystal’s volume V

ignoring all higher-order terms �n 3� of the nonlinearity

�n�. All three fields have the same polarization �ZZZ�:

Ep
�+� = �

sp

Ap�sp�ei�kpsp·r−�pt+!p�, �A3a�

Ês
�−� =� d!s� d�sA��s��

ss

e−i�ksss·r−�st+!s�âs
†��s,ss� ,

�A3b�

Êi
�−� =� d!i� d�iA��i��

si

e−i�kisi·r−�it+!i�âi
†��i,si� .

�A3c�

The field of the pump is classical and monochromatic so that

we can replace Êp
�+�

by Ep
�+�

. The plus-sign denotes conjuga-
tion, i.e., annihilation �"� or creation �#� of the state. In all
the calculations we use the notation k=ks, where s is the unit
length vector of k. The angular amplitude spectrum Ap�sp�
takes into account the focusing of the pump. For signal and
idler, we sum over both frequency and angular modes, where
â�� ,s� is the field operator, and A��� is the frequency am-

plitude of a Gaussian shaped detector filter having the band-
width 
� �FWHM� and center wavelength �c �all wave-
lengths in vacuum�. Via the relation �=2�cn� /� its form is
given by

A��;�� = e−2 log�2��� − �c�2/
�2
. �A4�

Each signal and idler photon is created with a random phase,
!s and !i respectively, which we also need to sum over. The
only nonzero solution is completely correlated phases as will
be shown later. The phase of the pump !p is constant but
arbitrary.

For periodically poled materials, the nonlinearity �2� has
sharp boundaries, and later on in the calculations it will fa-
cilitate to make an expansion of �2� into its Fourier-series
components

�2� = 2f�r� = 2�
m=0

�

fme−imK·r, �A5�

and then do a sinusoidal approximation using the first term,

�2� = 2f1e−iK·r, �A6�

where K=2� /�ez, and � is the grating period. Appendix B
treats the case of a M +1 term series expansion.
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From Eq. �A1� the number state becomes

��
 = ��00
 +� � d�sd�i�
ss

�
si

S��s,�i,ss,si�âs
†âi

†��00


= ��00
 + G2��11
 , �A7�

where G2 is the unnormalized amplitude for the two-photon
number state,

G2 = ��11��
 =� � d�sd�i�
ss

�
si

S��s,�i,ss,si� , �A8�

such that for t0=0,

1

i�
�

0

T

dt Ĥ�t� = G2âs
†âi

† − H.c. �A9�

Our goal now is to arrive at an expression for the ampli-
tude S which will also enter in the state of frequency and
angular spectrum of the form

���,s
 =� � d�sd�i�
ss

�
si

S��s,�i,ss,si���s
��i
�ss
�si
 .

�A10�

We start by inserting Eq. �A6� into Eq. �A2� and then Eq.
�A2� into Eq. �A9� which gives

G2 =
1

i�
�

0

T

dt�
V

d3r 2f1e−iK·rEp
�+�Es

�−�Ei
�−�. �A11�

By making a substitution of the fields in Eq. �A3� into Eq.
�A11�, and via identification using Eq. �A8� we find that

S��s,�i,ss,si� = 2f1A��s�A��i��
sp

Ap�sp�

� �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx e−i
k·�xex+yey+zez�

�
1

i�
�

0

2��
0

2�

d!sd!i�
0

T

dt

�e−i���s+�i−�p�t+!s+!i−!p�, �A12�

where the volume integral has been expressed in a Cartesian
coordinate system �r=xex+yey +zez, see Fig. 1�,

�
V

d3r = �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx . �A13�

We have also introduced the phase mismatching vector


k = ksss + kisi − kpsp + K �A14a�

=
kxex + 
kyey + 
kzez. �A14b�

In a Cartesian coordinate system the normalized vectors s are
represented by

ss = psex + qsey + msez,

si = piex + qiey + miez,

�A15�
sp = ppex + qpey + mpez,

K = Kez,

where p, q, and m are the normalized components of s in
each of the three dimensions �30�.

Because of the rotational symmetry of the emitted modes,
it is suitable to use a spherical coordinate system �	 ,��, for

which p=sin 	 cos �, q=sin 	 sin �, and m=cos 	. The
phase-mismatch vector components then become


kx = ks sin 	s cos �s + ki sin 	i cos �i − kp sin 	p cos �p,


ky = ks sin 	s sin �s + ki sin 	i sin �i − kp sin 	p sin �p,


kz = ks cos 	s + ki cos 	i − kp cos 	p + K . �A16�

Note that the magnitude of the signal and idler k-vectors
implicitly depends on the polar angle 	 according to

ks�	s� = 1/�� cos 	s

ks
Z �2

+ � sin 	s

ks
Y �2

, �A17a�

ki�	i� = 1/�� cos 	i

ki
Z �2

+ � sin 	i

ki
Y �2

, �A17b�

where ks
Z, ks

Y, ki
Z, and ki

Y are the constant magnitude of the
k-vectors along the crystals Z- and Y-axis, respectively �kp

need to be constant and equal to kp
Z as we will soon show�.

Generally, there is negligible difference in refractive indices
between the crystal’s X and Y axes which cancels the depen-
dence on the azimuthal angle � in the equations above. We
therefore use the Y axis as the major axis being orthogonal to
Z.

Using spherical coordinates exclusively leads to

S��s,�i,	s,	i,�s,�i�

= 2f1A��s�A��i��
0

�/2

sin 	pd	p�
0

2�

d�pAp�	p,�p�

� �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx e−i�
kxx+
kyy+
kzz�

�
1

i�
�

0

2��
0

2�

d!sd!i�
0

T

dt e−i���s+�i−�p�t+!s+!i−!p�.

�A18�

The angular spectral amplitude Ap of the pump beam in Eq.
�A18� is Gaussian shaped for a laser emitting in a TEM00

single mode, and in spherical coordinates it becomes �30�

Ap�	p,�p� =
kpw0p

�2�
e−�kpw0p�2 sin2 	p/4, �A19�

where the beam waist radius w0p of the focused pump beam
has entered the calculations. The function is normalized to
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represent the same constant power available in the beam at
different focusing conditions.

Now we will solve the integrals over space, time, and
phase in Eq. �A18�. In doing so we note that there are three
spatial integrals of which two are the Fourier transforms of
unity �dx and dy� and one is the transform of a box-function
�dz�. The transforms turn into two �-functions and a sinc-

function respectively. The time-integral also turns into a
�-function of the three frequencies �s, �i, and �p. This is
because we have a monochromatic pump-beam with infinite
coherence length, which effectively leads to an infinite
interaction-time, T→�, even for short crystals. The two in-
tegrals over the random phases !s and !i will make the
amplitude S vanish completely if the phases are not fully
correlated with each other. Therefore, the only non-zero so-
lution is when the two phases add up to a constant. S can be
complex-valued, thus yielding the relation !s+!i=!p+C. If
we let C=0 for simplicity, we are led to

S��s,�i,	s,	i,�s,�i�

= 2f1A��s�A��i��
0

�/2

sin 	pd	p�
0

2�

d�pAp�	p,�p�

� ��
kx���
ky�Lsinc�L

2

kz	4�2

i�
���s + �i − �p� .

�A20�

We now have two integrals over 	p and �p with
�-functions over 
kx and 
ky which in turn depends on 	p

and �p according to Eq. �A16�. The integrals can be canceled
in a few steps by setting the equalities 
kx=0 and 
ky =0,
and to that end we need to assume that kp is constant for
small angles 	p, i.e., kp=kp

Z which we believe is a fair ap-
proximation for pump-light that is not extremely focused. By
extreme we mean beyond the validity of the paraxial ap-
proximation. The latter equality applied to Eq. �A16� gives

�p� = arcsin� ks sin 	s sin �s + ki sin 	i sin �i

kp
Z sin 	p�

� . �A21�

Equation �A21� together with the relation arcsin�x�
=arccos��1−x2� now gives the following expression for


kx=0 of Eq. �A16� �with �p primed�,

ks sin 	s cos �s + ki sin 	i cos �i

− kp
Z sin 	p��1 − � ks sin 	s sin �s + ki sin 	i sin �i

kp
Z sin 	p�

�2

= 0. �A22�

If we now take the square of Eq. �A22� and solve for 	p� we
get

	p� = arcsin �P2 + Q2 = arccos �1 − �P2 + Q2� , �A23�

where

P =
ks sin 	s sin �s + ki sin 	i sin �i

kp
Z

, �A24a�

Q =
ks sin 	s cos �s + ki sin 	i cos �i

kp
Z

. �A24b�

Furthermore,

P2 + Q2 =
ks

2 sin2 	s + ki
2 sin2 	i + 2kski sin 	s sin 	i cos�
��

�kp
Z�2

,

�A25�

where we are allowed to introduce 
�=�s−�i. This is a
result of the assumption of rotational symmetry and will lead
to the final state being invariant to a common variation in the
azimuthal angles for signal, �s, and idler, �i. As shown here,
only the angle-difference is of importance. Using Eq. �A23�
in the expression for 
kz of Eq. �A16� we have


kz� = ks cos 	s + ki cos 	i − kp
Z�1 − �P2 + Q2� + K .

�A26�

At this stage the two integrals in Eq. �A20� have been
canceled and the amplitude can be simplified as

S��s,�i,	s,	i,
�� = 2f1A��s�A��i�Ap�	p�,�p��

� Lsinc�L

2

kz�	4�2

i�
���s + �i − �p� .

�A27�

One further simplification includes the observation that
the frequency �-function can be reduced to unity by intro-
ducing a common frequency � instead of �s and �i as de-
fined by �s=�0s+� ,�i=�0i−�, so that for two matched fil-
ters the form of the filter amplitude becomes squared. Using
also Eq. �A23� together with Eq. �A19� the expression for the
amplitude of the state of frequency and angular spectrum
finally becomes

S��,	s,	i,
�� =
4�22f1L

i�
A2���

kp
Zw0p

�2�
e−�kp

Z
w0p�2�P2+Q2�/4

� sinc�L

2
�ks cos 	s + ki cos 	i

− kp
Z�1 − �P2 + Q2� + K�	 , �A28�

where P2+Q2 is defined by Eq. �A25� and the ks’s and ki’s by
Eq. �A17�.

We now have a final expression for the two-photon am-
plitude

G2 =� d�� � sin 	sd	s sin 	id	i� d
�S��,	s,	i,
�� ,

�A29�

which gives the two-photon state-vector in terms of fre-
quency and angular spectrum in the form of Eq. �A10�

���,	,
�
 = G2��
�	s
�	i
�
�
 . �A30�

D. LJUNGGREN AND M. TENGNER PHYSICAL REVIEW A 72, 062301 �2005�

062301-16



APPENDIX B: SERIES EXPANSION OF �
„2…

The poling structure of periodically poled crystal has the
approximate form of a square-function along the z-axis. In
such a case, the M +1 term series expansion of �2� become

�2� = 2f�r� =
42

�
�
m=0

M
�− 1�m

2m + 1
e−i�2m+1�K·r, �B1�

where K=2� /�ez, and � is the grating period. In the fol-
lowing expression we have isolated the z-dependent part of
Eq. �A18�:

2f1�
−L/2

L/2

dz e−i
kzz. �B2�

Now, putting the series expansion of �2� into the calculations
of Appendix A, the former expression should be replaced by

42

�
�

−L/2

L/2

dz�
m=0

M
�− 1�m

2m + 1
e−i
kz

�m�
z, �B3�

where


kz
�m� = 
kz� + 2mK . �B4�

By reversing the order of the sum and the integral in Eq.
�B3� we can identify a Fourier transform of box-function
with an extra phase. The result of the transform is a sinc,
providing thus

42

�
�
m=0

M
�− 1�m

2m + 1
sinc�L

2
�
kz� + 2mK�	 , �B5�

which is the final expression to replace the sinc-function in
the state amplitude, Eq. �A28�, having now M +1 terms to
approximate the square-shaped poling structure. For M =0
the expression reduces to the sinusoidal approximation with
f1=4/�.
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Abstract: We use two perpendicular crystals of periodically-poled KTP
to directly generate polarization-entangled photon pairs, the majority of
which are emitted into a single Gaussian spatial mode. The signal and idler
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Polarization-entangled photon pairs have been central to recent experiments in quantum in-
formation, including investigations of quantum cryptography, quantum teleportation, and pre-
liminary results in linear-optical quantum computation. Perhaps the best-known scheme for
generating such photon pairs involves spontaneous parametric downconversion with type-II
birefringent phase matching, in which a pair of orthogonally-polarized photons are emitted into
two intersecting cones [1]. However, in this case, only a small fraction of the generated pho-
ton pairs are entangled. On the other hand, all of the frequency-degenerate pairs are entangled
in a scheme involving type-I phasematching in two separate crystals, allowing for significant
improvement in the generation efficiency [2]. In this case, the optic axis of the first crystal is
oriented horizontally, the optic axis of the second crystal is oriented vertically, and the pump
is polarized at 45◦ with respect to each of the axes. There is thus an equal probability that two
vertically polarized (V ) photons will be generated in the first crystal or that two horizontally
polarized (H) photons will be generated in the second crystal. These two possibilities are made
indistinguishable by using thin crystals, so that the generated photons emerge in two overlap-
ping cones. The conical emission is inconvenient, though, for coupling the emitted photons into
optical fibers, while the need to use thin crystals limits the pair generation rate.

We have therefore developed a two-crystal source of entangled photons which uses quasi-
phasematched (QPM) materials. QPM materials have previously been used for efficient gen-
eration of photon pairs without polarization entanglement [3, 4], and for probabilistic gener-
ation of polarization-entangled photon pairs by postselection [5]. In our scheme, by contrast,
polarization-entangled photons are generated directly. Compared to schemes that involve pump-
ing a single QPM crystal from opposite sides [6], the two-crystal scheme has the advantage of
not requiring a stabilized interferometer.

The poling period of our crystals is chosen to allow for co-polarized (ZZZ), colinear down-
conversion. The colinear configuration means that the output modes of the photons created in
the first and second crystals have nearly complete spatial overlap, regardless of crystal length.
In other words, it is possible to use long crystals, thereby increasing the pair generation rate,
without reducing the degree of entanglement. As well, the signal and idler beams have a large
overlap with a simple Gaussian (TEM00) mode, allowing for efficient coupling of the generated
photons into single-mode optical fibers. Finally, since the entanglement is generated directly in
the downconversion process, it is not necessary that the signal and idler be frequency degen-
erate. We have thus chosen the idler to have a wavelength of 1550 nm, corresponding to the
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transmission-loss minimum in optical fibers, while choosing the signal to have a wavelength
of 810 nm, allowing for efficient, low-noise photon counting using Si-based detectors [7]. Very
nearly the same wavelength pair is also of interest for quantum teleportation systems in which
the signal photon is used to load a Rb-based quantum memory [8].

Our nonlinear crystals are flux-grown, periodically poled potassium titanyl phosphate (PP-
KTP) [9, 10]. Each crystal is 5 mm long (in the X direction) and 0.5 mm high (in the Z direc-
tion). A photoresist grating with a 9.6 µm period is patterned on the top side of the unpoled
crystal, and poling is achieved by applying voltage pulses across the crystal using liquid elec-
trodes. The poling is monitored via the electro-optic effect, by observing polarization changes
of a He-Ne laser beam passing through the sample in the X direction [11].

Fig. 1. (a) Wavelength of the signal photons, as a function of sample temperature. The
points show the experimentally-measured values, while the solid line is the theoretical pre-
diction. (b) Spectrum of the signal photons at a sample temperature of 109.3◦C.

Since downconversion occurs with high efficiency in the PPKTP crystals, only a mod-
erate pump power is needed. This is provided by a compact, diode-pumped, frequency-
doubled Nd:YAG laser, which has a continuous-wave output at a wavelength of 532 nm. This
source is small compared to the large-frame lasers generally used for downconversion (only
120× 50× 36 mm), allowing the entire pair-generation system to be compact and inexpen-
sive. Stray light is reduced by sending the pump beam through a bandpass (BP) filter. The two
PPKTP crystals are mounted orthogonally on a temperature-controlled brass block.

Figure 1(a) shows the measured signal wavelength as a function of sample temperature. Also
shown are the predicted wavelengths, calculated using published Sellmeier coefficients [12, 13].
Good agreement between theory and experiment is seen. The results show that a temperature of
109.3◦C will give a signal wavelength of 810 nm, corresponding to an idler wavelength of 1550
nm. Figure 1(b) shows the signal spectrum at this temperature; it can be seen that the signal has
a bandwidth of only 5 nm.

The idler beam was sent through a lens, and its profile was measured at various distances
from the crystal using an InGaAs detector array. A sample profile is shown in Fig. 2(a); it can
be seen that the profile has the symmetric, circular shape characteristic of a fundamental TEM00
mode. In order to make a more quantitative analysis, the measured profiles were integrated in
the horizontal and vertical directions, and the integrated profiles were fitted to Gaussians in
order to obtain beam diameters, shown in Fig. 2(b). The results were fitted to the standard
formula for nearly Gaussian beam propagation [14], giving M2 parameters of 2.4± 0.3 and
2.0±0.2 in the horizontal and vertical directions, respectively. This indicates that the majority
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Fig. 2. (a) Sample contour plot of the idler beam. (b) Diameter of the idler beam at different
distances from the nonlinear crystal (points: measured data, lines: fits).

of the beam is contained within a single Gaussian spatial mode. The slight difference between
the two different directions may be due to ellipticity of the pump beam, or imperfect alignment
of the lenses or the crystal axes relative to the pump beam.

Fig. 3. Predicted M2 values for the idler beam as a function of the pump beam waist.

Figure 3 shows theoretically estimated M2 values for different pump beam waists [15]. These
values were obtained by numerically integrating the nonlinear interaction Hamiltonian over the
length of the crystal, thereby calculating the angular distribution of the photon-pair probability
amplitude. This probability amplitude was used to calculate the idler density matrices. For each
eigenvector of these density matrices, the spatial distribution of the electric field was deter-
mined; these spatial profiles were summed incoherently to give the total intensity distribution.
These calculated profiles were then fitted in the same way as the experimental profiles in or-
der to obtain M2 values. Our experimental focussing condition corresponds to a beam waist of
approximately 8 µm, giving a theoretical M2 value of approximately 2.7. Considering the im-
precisions involved in using Gaussians to fit more complex beam profiles, we have reasonable
agreement between the theoretical prediction and our experimental results. Optimization of the
pump focussing conditions should allow a lower M2 value to be achieved, corresponding to an
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even larger overlap with the fundamental Gaussian mode.
Figure 4 shows a schematic of the apparatus used to generate and characterize the

polarization-entangled photons. After the BP filter, the pump beam is sent through a polarizing
beamsplitter (PBS) and a half-wave plate (HWP), which is rotated until the detection rates for
horizontally- and vertically-polarized signal photons are the same. Following the crystals, the
signal and idler beams are collimated, and are then separated using a dichroic beamsplitter.

At this point, the generated photon pairs are not yet highly entangled. Since the signal and
idler have very different wavelengths, they will experience significantly different group veloc-
ities in the PPKTP. Two V photons generated in the first crystal will pass through a greater
length of PPKTP than two H photons generated in the second crystal, and will thus be sepa-
rated further from one another by the time they leave the material. This means that photons with
different polarizations are distinguishable, destroying the entanglement. In order to recover the
entanglement, it is necessary to delay the V photons relative to the H photons in only one of
the beams (signal or idler), thereby eliminating the temporal separation between photons with
different polarizations and erasing the distinguishing information. This delay is provided by
two calcite crystals, each 1 mm thick, which we place in the idler arm. Following the calcite
crystals is a quarter-wave plate, which adjusts the phase between the two polarizations.

Fig. 4. Schematic of the experimental apparatus. PPKTP = periodically poled KTiPO4, BP
= bandpass filter; PBS = polarizing beamsplitter, HWP = half-wave plate, QWP = quarter-
wave plate, SM = single-mode, APD = avalanche photodiode.

In order to evaluate the entanglement between the photons, we place a HWP followed by a
PBS in each of the signal and idler arms. Pump laser light is removed by sending the signal
and idler beams through BP filters with bandwidths of 10 nm. The beams are then coupled
into single-mode optical fibers using aspheric lenses. Additional rejection of pump laser light
is provided by chromatic aberrations in the focussing lenses, which ensure that only the desired
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wavelengths are focussed exactly onto the fiber tips. The fiber used for the idler photons is
designed for single-mode operation at the telecommunications wavelength of 1550 nm, while
the fiber used for the signal is designed for single-mode operation at 820 nm. The fiber for the
idler photons leads to a home-built detector module incorporating an InGaAs / InP avalanche
photodiode (APD) [16], while the fiber for the signal photons leads to a low-noise Si-based
APD module. The output pulses from this detector are sent to a delay / pulse generator, which,
in turn, sends gate pulses (4.0 V amplitude, 5 ns duration) to the InGaAs APD module. The
delay is adjusted so that the gate pulses arrive at the InGaAs detector at the same time as the
idler photons. This means that the InGaAs APD module detects coincidences (i.e., signal and
idler photons generated simultaneously by the source). We note that the delay / pulse generator
cannot relay a second pulse if it arrives less than 1 µs after a first pulse, so that some of the
output pulses from the Si APD module are lost; this effectively means a slight reduction in our
overall detection efficiency.

To measure the polarization correlations between signal and idler photons, we set the HWP
in the signal path to a particular angle and rotate the HWP in the idler path; for each setting,
we measure a coincidence rate. This rate includes both “true” coincidences, corresponding to
photons generated simultaneously in the PPKTP, and “accidental” coincidences, corresponding
to photons generated at different times that happen to both arrive at the detector within the 5
ns detection time window. The accidental coincidence rate was measured, for each polarizer
setting, by increasing the gate pulse delay by more than 5 ns, and was then subtracted from the
total measured coincidence rate to obtain the rate of true coincidences.

Results are shown in Fig. 5; for these measurements, the incident pump power was 62 mW.
There is a strong correlation between signal and idler polarizations, regardless of the measure-
ment basis; this is the signature of entanglement. The fitted visibilities in the H, V , and 45◦

bases are 95.2± 0.4%, 95.4± 1.0%, and 79.7± 0.6%, respectively. The visibilities in the H

and V bases are probably limited by the fact that the crystals are not exactly perpendicular to
one another. In future work, this will be corrected by mounting one of the samples on a rota-
tion stage, so that its orientation can be optimized with respect to the other [15]. The reduced
visibility in the 45◦ basis, on the other hand, is largely due to the fact that the calcite crystal
thicknesses have not been optimized. The birefingence of these crystals is used to compensate
for group-velocity differences between the signal and idler in the PPKTP crystals, as described
above. The degree of compensation is determined by the amount of calcite material the idler
photons pass through, which must be carefully adjusted in order to exactly cancel the differ-
ences in group delay and restore a high degree of entanglement [15]. The reduced visibility
is also partially due to small differences between the two PPKTP crystals, possibly caused by
inhomogeneities in poling period, refractive indices, and nonlinear coefficient. More uniform
crystals can be obtained (albeit at a greater expense) using the hydrothermal growth technique.
However, a more practical solution may be to test a number of imperfect crystals until two
are found which have nearly identical nonlinear-optical properties; using these two crystals
together will cancel out the effects of their imperfections.

The quantum efficiency of the InGaAs detector module was calibrated by measuring the
count rates when sending in light from a fiber-coupled laser, attenuated by various degrees.
After correcting the measured count rates for the Poissonian statistics of the input light, we cal-
culated a quantum efficiency of 8%, including any losses in the optical fiber, as well as coupling
losses between the fiber and detector. The quantum efficiency of the Si detector was similarly
determined to be 57%. Using these detector efficiencies, we deduced the photon pair number in
the single-mode optical fibers, shown on the right-hand axis of Fig. 5. We obtain approximately
3200 pairs/s in the fibers for every mW of pump power, better than any fiber-coupled source of
polarization-entangled photons that we are aware of, regardless of wavelength [17, 18].
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Fig. 5. Coincidence rate as a function of idler polarization, for three different settings of the
signal polarization (points: measured data, lines: fits). Right-hand axis: inferred photon-pair
number in the single-mode fibers.

We also calculated the overall photon detection efficiencies by comparing singles rates to
coincidence rates. Photons are generated in pairs at a rate R. The number of signal and idler
photons detected are Ss = ηsR and Si = ηiR, respectively, where ηs and ηi are the overall
signal- and idler-photon detection efficiencies. The number of coincidences detected, on the
other hand, is C = ηsηiR, so the overall detection efficiencies can be simply determined by
calculating the ratios ηs = C/Ss and ηi = C/Si. These total efficiencies are the products of the
detector quantum efficiencies, described above, and the coupling efficiencies into the single-
mode fibers; the coupling efficiencies can thus be determined by dividing the measured overall
efficiencies by the calibrated detector efficiencies. Following this procedure, we determined
coupling efficiencies of 21% and 7.5% for the signal and idler, respectively. This means that we
have a total entangled-pair generation rate in a single spatial mode of approximately 1.2×107

sec−1, comparable to the best reported rates for polarization-entangled photon pairs [6]. In
this first experiment, we have not attempted to optimize coupling into the single-mode fibers.
The relatively low coupling efficiencies we obtain are due to imperfect matching between the
incoming signal and idler beams and the modes of the optical fibers; this matching is likely
poorer for the idler beam, resulting in a lower coupling efficiency. By optimizing the focussing
optics, it should be possible to obtain better mode matching and, therefore, significantly better
fiber coupling [19].

In summary, we have demonstrated a new, efficient source of highly frequency-
nondegenerate, polarization-entangled photon pairs using two crystals of periodically poled
KTP, with the majority of the photons emitted into single spatial modes. The idler photons
have a wavelength of 1550 nm, suitable for long-distance fiber transmission, while the signal
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photons have a wavelength of 810 nm, suitable for detection with high-quality Si-based pho-
ton counters. The downconversion efficiency is high, so that a relatively low-power pump laser
can be used, thereby reducing the cost and size of the system. The design is highly flexible;
for example, straightforward modifications would make it possible to generate any two-photon
polarization state [20], while different pairs of signal and idler wavelengths could be generated
simply by changing the crystal poling period (or temperature) and the pump wavelength. In this
sense, our system should be able to serve as an all-purpose source of polarization-entangled
photon pairs.

We would like to thank G. Björk for his helpful comments, and J. Waldebäck for his indis-
pensable assistance with electronics. This work was supported by the Swedish Foundation for
Strategic Research (SSF) and the European Commission through the IST 199-100 33 QuComm
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We propose secure protocols for user authenticated quantum key distribution on jammable public channels
between two parties, Alice and Bob. Via an arbitrator, Trent, these protocols provide data integrity and mutual
identification of the messenger and recipient. The first three are based on single-photon generation and detec-
tion. The first and second require ~initially! an unjammable channel between the arbitrator and each party. The
third requires one broadcast from the arbitrator, disclosing what type of deterministic modification of the states
sent through the quantum channel was done by him. The fourth and fifth protocols are based on two-particle
entanglement with a preselection of nonorthogonal superpositions of Bell states. These two protocols also
require one broadcast from the arbitrator disclosing the type of entangled state in each sending.
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I. INTRODUCTION

Secure electronic communication, as provided by cryp-
tography, is one of the cornerstones of the emerging infor-
mation society. The following are among the basic tasks of
cryptography: authentication of users, integrity of data, and
privacy of data @1,2#. By user authentication ~also called user
identification! we mean the way in which a user’s identity is
proved ~i.e., the origin of data!; by data integrity ~also called
data authentication! we mean the way that data sent by the
true user over any channel have not been modified or re-
placed; and by privacy of data, we mean the prevention of
data from being intercepted by an unauthorized eavesdrop-
per. The latter is warranted by encrypting the plain text into
a cipher text, and for this we need a key that is to become
shared by both parties involved, and this requires secure key
distribution.

Classically, cryptography is divided into two classes,
namely, private ~symmetric! key cryptography and public
~asymmetric! key cryptography. In the former class, two us-
ers ~conventionally denoted Alice and Bob! must share a key
to protect the privacy of data. To some extent this method
can also be used to provide data integrity once the users have
been authenticated, but not for user authentication directly
since this requires an encryption key that has not yet been
authenticated.

In the latter class, a user can provide all other users with
a public key for encryption, while he/she keeps a private key
for decryption. The decryption key cannot easily be found
knowing only the encryption key. This class of cryptosys-
tems easily solves the problem of key distribution, and can
also be used to provide user authentication and data integrity,
although it has the disadvantage of relying heavily on com-
putational assumptions @1–4#, making it vulnerable to threats
of powered computing. It is often used together with private
key cryptography, and serves in this case only the need for
key distribution.

Quantum key distribution ~QKD! has been proposed as a

way to solve the problem of key distribution using funda-
mental properties of quantum mechanics to establish an un-
conditionally secret shared key @5–7#. See @8,9# for a flavor
of experimental QKD and @10–12# for discussions on the
security of QKD.

Before addressing the issue of authentication, we will de-
fine two types of channels present in QKD: the quantum
channel and the public channel.

~1! The quantum channel serves the need to be private in
the sense that the quantum channel may be eavesdropped on
or tampered with by no more than what is permissible by
quantum mechanics. This can be done passively by Eve, or
actively by Mallory. The essence of QKD is to provide a
method of encoding bits onto quantum states in such a way
that any measure taken by an eavesdropper can be discov-
ered by the legitimate users.

~2! The public channel is used by involved parties to ex-
change classical information, required for basis encoding, er-
ror correction, check of eavesdropping, and privacy amplifi-
cation. It can be divided into two classes: jammable and
unjammable. The unjammable channel provides data integ-
rity that can be classically realized through authentication
techniques using hash functions @3#. The security of these
functions, though, also relies on computational assumptions.
The jammable channel can be actively tampered with in such
a way as to insert or modify messages.

A crucial assumption in QKD has been that the public
channel is unjammable. Indeed, if Mallory controls the clas-
sical public channel as well as being able to monitor the
quantum channel, QKD will inevitably fail. In such a sce-
nario, Mallory can always do a ‘‘man-in-the-middle’’ attack
and impersonate Alice or Bob. For instance, separate keys
could be established for Alice and Bob, and thus provide
unlimited access to their information.

To guarantee that this does not happen, user authentica-
tion comes into play. The fundamental problem of authenti-
cation is how to check for a shared secret under the guaran-
tee that it will stay known only to Alice and Bob. For mutual
authentication, of course, it is inevitable that they share some
initial secret. If this is not the case, one classical method is to
use a trusted third party who can verify that a certain key*Electronic address: andkar@ele.kth.se
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belongs to whomever it is supposed to—like in public key
cryptography. User authentication based on quantum cryp-
tography using any kind of public channel has previously
been studied. Most protocols use unjammable channels and
are so-called self-enforcing; i.e., no parties other than Alice
and Bob are involved. However, a realistic QKD environ-
ment instead suggests that a jammable public channel be-
tween Alice and Bob should be considered. Moreover, con-
trary to self-enforcing protocols, we believe it is desirable
that Alice and Bob need not share an initial secret. Due to
this, and to prevent ‘‘man-in-the-middle’’ attacks, the intro-
duction of a trusted authority, Trent, becomes inevitable also
for QKD. The authentication between Alice and Bob will
instead pass via Trent, who can verify ~necessarily over un-
jammable channels! to each user the identity of the other.
This is partly addressed in Ref. @21#.

Unjammable channels like those between Alice-Trent and
Bob-Trent can be guaranteed by ‘‘personal’’ authentication
of such a kind that you make when you visit your bank to get
your personal identification number code, together with clas-
sical authentication techniques, e.g., authentication codes @2#.
In principle, if necessary, arbitrarily long authentication
seeds can be exchanged for this purpose.

As a first indication that quantum authentication could be
possible we consider the method of Crépeau and Salvail
@13#. It provides a simple solution without Trent: if there is a
shared secret string between the true Alice and Bob, then use
the secret string for the selection of the polarization basis in
the Bennett-Brassard 1984 ~BB84! four-state quantum cryp-
toprotocol @5# and send a known code word over the channel.
Having no a priori information regarding the basis choice,
the eavesdropper will inevitably make errors in his or her
detection. Independently, Huttner, Imoto, and Barnett pro-
posed a very similar idea in Ref. @14#, again using the basis
encoding to test the correspondence between two strings.
The problem, however, as stressed in @13#, is that in the
authentication process a dishonest party or an eavesdropper
should not be able to extract any information about the initial
secret, even through repeated attempts. In @13#, no solution
to this strict requirement was found, although it was pro-
posed that a protocol could be built on quantum-oblivious
transfer. Later, however, it was shown that quantum-bit com-
mitment and quantum-oblivious transfer are not uncondition-
ally secure @15,16#.

Similar ideas along these lines, without Trent, have also
been presented by Dusek et al. in @17#. They propose one
classical and one QKD-based solution for user authentica-
tion. To address the problem in @13# regarding repeated at-
tempts by an eavesdropper, the bits used for authentication
are thrown away after each interleaved comparison of their
secretly shared string. New secret bits are then refueled using
QKD.

Another recent paper @18# discusses self-enforced authen-
tication based on entanglement catalysis. In a first simple
protocol, Alice and Bob share an ensemble of two-particle
entangled quantum states. The initial secret in this case is
Alice and Bob’s unique knowledge of the particle states. To
authenticate, Alice ~Bob! sends over a number of states from
her ~his! ensemble and Bob ~Alice! verifies that the states are

the correct ones. In this process, a few of the initial states are
consumed and thus the authentication secret is diminished. In
an improved version of the protocol, the states initially
shared by Alice and Bob are catalysis states @19#. Using
these catalysis states as the shared secret only Alice and Bob
will be able to make the correct local transformations @20,19#
of another pair of states. The correctness of this transforma-
tion is verified between Alice and Bob and used as an au-
thentication. What is interesting about this procedure is that
the shared secret information, the catalysis states, is kept
intact.

These protocols described above involve only Alice and
Bob. Recently, Zeng and Zhang @21# studied the same basic
idea as in @13# and @14#; however, their work was more in the
context of user authenticated secret key distribution. Trent is
introduced to generate the initial secret. In the protocol, Al-
ice and Bob each have a two-particle entangled state
@Einstein-Podolsky-Rosen ~EPR! pairs# from which one par-
ticle each is sent to and measured by Trent. He uses the
method of entanglement swapping @22# to generate a joint
key to be used by Alice and Bob. Following this, the joint
key should be used for user authentication in an EPR-type
quantum cryptography @6# protocol with the basis choice
made from the joint session key, similar to @13# and @14#.

The main purpose of the present work is to address the
issue of user authentication and data integrity by quantum
methods. This also goes under the name of quantum authen-
tication. As pointed out, in a realistic scenario we cannot
justify self-enforcing protocols, and so therefore we feel the
arbitrator unavoidable. With Trent’s help, and with a jam-
mable channel at Alice and Bob’s disposal, we will provide
means for Alice and Bob to agree upon a secret key using
QKD. If we have a channel, or a combination of channels,
that can provide us with data integrity, we can then use this
to perform user authentication. Furthermore, we will show
that the same objectives as in @21#, using an arbitrator, can be
achieved in a less complex fashion using either nonentangle-
ment or entanglement-based protocols.

The paper is outlined as follows: In this introduction we
gave a brief review of the recent work on quantum authen-
tication. In Sec. II we will introduce and define the condi-
tions for the third-party trusted authority, Trent. His role is to
provide Alice and Bob with the seeding information that will
increase security. In Sec. III, we present protocols for quan-
tum key distribution based on conventional single-photon
quantum cryptography, providing user authentication and
data integrity. In Sec. IV, we present two simple
entanglement-based quantum key distribution protocols, also
with user authentication and data integrity. Finally, in Sec.
V, our results are discussed and concluded.

II. THIRD-PARTY TRUSTED ARBITRATOR

FOR QKD-BASED USER AUTHENTICATION

Obviously, it would be nice if quantum methods could
provide self-enforcing protocols. However, even if this
would call for some kind of ‘‘asymmetric quantum key’’
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cryptography ~which remains to be invented!, we would un-
fortunately still need a trusted authority to authenticate the
public quantum key. What we are concerned with here is to
reflect upon whether quantum mechanics with its inherent
properties ~unitarity, entanglement! can yield any advantage
over classical methods providing authentication via an arbi-
trator.

For protocols designed with Trent, like those proposed
here and in Ref. @21#, we believe we cannot provide Alice
and Bob with a key that can be unconditionally kept in secret
from Trent, as it is actually he/she who directs the entire
authentication process. In other words, if Alice and Bob’s
mutual authentication is guaranteed only by their individual
and non-necessarily correlated secret with Trent, Trent will
also have full control over their communication ~regardless
of what channels are used! and can always do a ‘‘man-in-
the-middle’’ attack if he so chooses. We conclude that, in
principle, no restrictions can be imposed on Trent.

What we gain though, and what our last four protocols
show, is that we can make it necessary for Trent to actively
have to eavesdrop on the communication between Alice and
Bob in order to get the key. Also, for the authentication that
enables the authenticated direct channel to be opened up be-
tween Alice and Bob, we can allow the channels Alice-Trent
and Trent-Bob to be open only once initially. Note that Trent
can succeed in his eventual attempt of finding the key only
during its setup and that Mallory can never. The protocols
we propose are quite simple, and can clearly be improved,
but we hope they are in enough detail to illustrate a few
points that presumably have not been pointed out before.

Suppose the protocol followed by Trent has the following
properties:

~A! Alice and Trent know the identity of each other, and
they share at some instant an unjammable public channel.

~B! Bob and Trent know the identity of each other, and
they share at some instant an unjammable public channel.

If the channels are available at all times, we again have an
unjammable and direct public channel between Alice and
Bob, and conventional quantum cryptography can be used.
What we would like to do is to set restrictions on the joint
availability of the channel with Trent. We will present five
schemes, starting from very simple schemes and moving to-
ward more complex ones, where with given restrictions, and
some additional ones, one will be able to authenticate Alice
and Bob, while at the same time provide a secret key for
encryption. By giving these examples, we try to address the
essential classical and quantum ingredients in the protocols.

III. NONENTANGLEMENT-BASED QKD WITH USER

AUTHENTICATION

A. Nonentanglement QKD protocol „i…

The additional restriction we set on the channels between
Alice and Trent and Bob and Trent for the next two protocols
is ~C! the public channel between Alice and Trent is open
only once, as is also the channel between Bob and Trent, and
there is on no occasion a channel that is directly open be-
tween Alice, Trent, and Bob. This condition, as formulated,
is needed for the scheme presented next.

To set up the authentication between Alice and Bob, Trent
does the following, as illustrated in Fig. 1:

~1! Trent sends Alice a long bit string encoded using the
BB84 protocol ~or another quantum key distribution protocol
such as Ekert’s protocol @6#! along with error correction and
privacy amplification @5# to generate a secret key KA . He
then sends the ‘‘session key’’ K to Alice encrypted with the
secret key KA .

~2! Next, Trent sends the key K to Bob by the same
method ~using a different secret key KB!.

~3! Alice and Bob can send each other the secret message
encrypted with the key K. It should be noted that in this
trivial case, since Trent knows the key K, he can also listen
to the encrypted communication. Furthermore, this protocol
is obviously nothing other than a slight variation of the con-
ventional quantum cryptographic protocol split up into two
channels with Trent in the middle. Thus this protocol as such
is not very interesting, but it serves as a prelude to the pro-
tocols that will follow.

B. Nonentanglement QKD protocol „ii…

The second protocol is also based on the scheme BB84
using either phase or polarization encoding. The basic idea
of this protocol is to send an authentication string S to Alice
and Bob, which is then sent from Alice to Bob interleaved
with the other bits in the QKD protocol.

FIG. 1. Channel diagram for protocol ~i!. The wavy line shows
the quantum channel, the dotted line shows the unjammable public
channel, and the dashed line the encrypted channel. See text for
details.

FIG. 2. Channel diagram for protocol ~ii!. The line types are
defined as in Fig. 1, with the addition of the solid line showing the
jammable public channel. See text for details.
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The restriction we set on the channels between Alice and
Trent and Bob and Trent is the same as in the previous ex-
ample, i.e., ~A–!C!. The added feature in this protocol, and
in the ones following, is that Trent does not directly possess
the key K, but he has to actively eavesdrop on the informa-
tion in Y to get it. On the contrary, Mallory can always be
detected.

To set up the authentication between Alice and Bob, Trent
does the following, as illustrated in Fig. 2:

~1! Trent sends Alice a long bit string encoded using the
BB84 protocol with extra information X for error correction
and privacy amplification. This will give Alice a bit string SA

of N bits, which is provably secure.
~2! Next, Trent sends an even longer bit sequence to Bob

and establishes a secret bit string with Bob, SB , again using
the BB84 protocol with extra information X. From this
string, Trent tells Bob a sequence BT5(b1 ,b2 , . . . ,bN), with
the property that the bit sent to Bob at position b i is exactly
the same as the corresponding bit i in the string SA estab-
lished for Alice. Using this, Alice and Bob now share a com-
mon secret string S5SA5SB . Note that we rather not use S

for the encryption itself, as Trent has direct knowledge of it.
In practice we gain security if we can make Trent to actively
have to eavesdrop on the information in Y to get the key. On
the contrary, Mallory can always be detected.

~3! To use S for authentication, we partition S into blocks,
S5(S1 ,S2 , . . . ,Su ,W ,Z) where the length of S1 ,S2 , . . . ,Su is
log(M) bits ~all log in base 2!, M is the total number of bits
sent for the key, and the length of W and Z is equal to u. We
then let each block represent a position in the ensuing secret
key transmission. The small chance that any S i5S j for any i

or j can be treated separately. Alternatively, we may divide
M into separate blocks, with one S i for each block. If so, the
length of block S i is log(M/u) bits.

~4! Now Alice and Bob establish a secret key K according
to the BB84 protocol, sending a long bit string of M bits,
however, interleaved at given bit slots S i with a known out-
come taken as the ith bit of W with polarizer settings from
the ith bit of Z. This is similar to the hiding procedure used
in @13#. With no a priori information on S, the photon se-
quence will then appear completely random for Mallory. In a
simpler version, one could just use deterministic settings of
the polarizers since Mallory will only get a few chances to
extract the string.

~5! For Bob to authenticate Alice, he only checks that the
outcome Y he receives corresponds to the correct ones he
expects. This could be done using some coding procedure
similar to that used in @13#, or simply by checking the bit-
error rate ~BER! of the bits received. It should be noted that
in practical cases where the transfer efficiency is low, the
length of Y is much smaller than the length u of W.

~6! For Alice to authenticate Bob, she waits for Bob to
send back over the public channel the result of Bob’s mea-
surement of Y together with the information of the timing
slots indicating when he received each bit. The latter is
needed when the transfer efficiency is below unity for Alice
knowing which bit was received by Bob. If correct, she
knows that Bob is the correct person receiving the secret key
K. To succeed with eavesdropping, or impersonation, Mal-

lory would have to succeed in evading detection. For the
BB84 scheme using an intercept-and-resend strategy on all
bits, Mallory will introduce a 25% BER @5#. Furthermore, he
would have to guess which of the M bits constitutes W. The
probability of succeeding in obtaining the authentication
string correctly with no a priori information on S is Pr(S)
5(3/4)u(M

u ), which is very small.
Another check of authentication is that Bob also knows

that the sensible clear text he extracts must come from Alice,
because if Mallory does not know K he cannot produce a
cryptogram that when decrypted would produce anything
readable.

C. Nonentanglement QKD protocol „iii…

Let us now present an even simpler protocol, which to
some extent resembles @21# in that Trent determines the cor-
relations between the bits sent by Alice and received by Bob.
Let us modify assumptions ~A! and ~B! and ~C! to the fol-
lowing: ~A8! Trent can publicly ~unjammably! broadcast to
Alice and Bob the results of his actions. There also exists a
jammable public channel between Alice and Bob.

The protocol is as follows, illustrated by Fig. 3:
~1! Alice sends Bob a string S of qubits encoded accord-

ing to the BB84 protocol, i.e., for each bit sending either a
uz1&, uz2&, ux1&, or ux2& polarized photon.

~2! Trent sits midway between, and choose randomly be-
tween five sets ~shifts qubits uz1&→uz2& , uz2&→uz1& ,
ux1&→ux2&, ux2&→ux1& or does nothing!. This is pos-
sible both in theory and in practice ~using a polarization
shifter!. Note that Trent does not know what the bit value is,
as he does not measure the polarizations, he only shifts them.
If he had measured them, his actions would have been the
same as those of an eavesdropper.

~3! Bob tells Alice a different set of bits, their position in
the transmission, and the settings of the polarizers. This clas-
sical information is denoted Y in Fig. 3.

~4! Bob and Alice randomly alternate telling the settings
of the polarizers for all the states received. This classical
information is denoted Y in Fig. 3.

~5! Trent broadcasts ~unjammably! to Alice and Bob
whether or not he shifted the bits. Alternatively, we may

FIG. 3. Channel diagram for protocol ~iii!. The line types are
defined as in the previous figures. In the quantum channel that goes
between Alice and Bob ~via Trent!, Trent can only make changes in
polarization. See text for details.
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suppose that the choice of states by Trent is secret informa-
tion that the true Alice and Bob are given. This information
is denoted X in Fig. 3.

~6! The above is done by first keeping only bits where the
settings of the polarizers are correct.

If the data between Alice and Bob and the settings given
from Trent agree, Bob and Alice have again authenticated
each other via Trent. Let us stress the essential ingredient for
authentication, namely, that Alice and Bob declare their
bases and outcome for the test bits before Trent tells how the
outcomes should be correlated. Note once again, that if Trent
does not actively proceed with any eavesdropping on Alice
and Bob’s channel he will not know the authentication
string, nor the key, K.

IV. ENTANGLEMENT-BASED QKD WITH USER

AUTHENTICATION

Let us now show two protocols for authenticated key dis-
tribution based on entangled states. Whereas in @21#, for each
shared bit two entangled states are used, one for Alice and
one for Bob, followed by an entanglement swapping mea-
surement @22#, in our protocol only one initial two-particle
entangled state per shared bit is needed, which would make a
substantial simplification in practice. In the present scheme,
as illustrated in Fig. 4, Trent has a pool of entangled states.
For each bit he wants to establish, he sends the first particle
from the entangled state to Alice, and the other to Bob. Note
that the present protocol uses some ideas from quantum se-
cret sharing @27,28#. As in @21#, using entanglement, Trent
will only be required to broadcast extra information regard-
ing which entangled states he sent in each case.

Before going into the protocols, let us reiterate some basic
properties of entangled photon states. A two-photon en-
tangled state, such as that generated from a type-II paramet-
ric down-conversion crystal @23#, can be written as

uc&5

1

&
~ uz1&uz2&1e iauz2&uz1&), ~1!

where a is a birefringent phase shift of the crystal, and uz1&
and uz2& denote the horizontal and vertical polarization
eigenstates.

Using appropriate birefringent phase shifts and polariza-
tion conversions, one may easily convert the above state into
any of the four Bell states;

uf6&5

1

&
~ uz1&uz1&6uz2&uz2&), ~2!

uc6&5

1

&
~ uz1&uz2&6uz2&uz1&). ~3!

Shifting between these states ~actually among all four Bell
states! has been demonstrated experimentally in Bell-state
analysis @24#. ~In the entanglement-based quantum cryptog-
raphy scheme @6#, however, one considers a passive version
based on sending only one of the Bell states to Alice and
Bob.!

Furthermore, let us define a new linear combination of
Bell states as

uC1&[
1

&
~ uf2&1uc1&)5

1

&
~ uz1&ux1&1uz2&ux2&)

5

1

&
~ ux1&uz1&1ux2&uz2&), ~4!

uF2&[
1

&
~ uf2&2uc1&)5

1

&
~ uz1&ux2&2uz2&ux1&)

5

1

&
~ ux1&uz2&2ux2&uz1&). ~5!

Now the set of states uw&P$uc1&,uf2& ,uC1& ,uF2&% has
the feature that ^c1uf2&5^C1uF2&50.

Furthermore, all states are not orthogonal, as
u^c1uC1&u2

5u^c1uF2&u2
51/2 and u^f2uC1&u2

5u^f1uF2&u2
51/2. We will use this feature in the protocols

below. The main idea is for Trent to pick states from a set of
nonorthogonal base states and send them to Alice and Bob.
Since the states are nonorthogonal, Mallory cannot intercept
them and reliably measure their properties. A second feature
we will use in the protocol is that Alice and Bob will first
declare their information for authentication based on their
respective measurements. After this, Trent will release which
quantum state was sent, allowing Alice and Bob to cross
check independently to see if the information released was
correct. An impersonator like Mallory will not be able to
release the correct information, and Alice and Bob will know
that the public and/or quantum channel has been tampered
with.

A. Four-state entanglement-based QKD with user

authentication „iv…

Using two-particle quantum entanglement with Trent pro-
viding the states, we keep assumption ~A8! on Trent. Let us

FIG. 4. Channel diagram for protocols ~iv! and ~v!. The line
types are defined as in the previous figures, with the addition of the
entangled-state quantum channel illustrated with a wavy dashed
line. See text for details.
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as starting states pick uf2& and uc1& as one base, and uF2&
and uC1& as the other. The user authentication and key dis-
tribution scheme illustrated with Fig. 4 is as follows:

~1! Trent sends one of the entangled states uw&
P$uc1& ,uf2&,uC1& ,uF2&%, each with a probability of 1

4.
One photon from the entangled state is sent to Alice, and the
other photon is sent to Bob. Alice and Bob measure the
polarization of the incoming photon by switching randomly
between the z base and the x base.

~2! Alice tells Bob a set of bits, their positions in the
transmission, and the corresponding settings of the polariz-
ers.

~3! Bob tells Alice a different set of bits, their positions in
the transmission, and the corresponding settings of the polar-
izers.

~4! Bob and Alice randomly alternate telling the settings
of the polarizers for all the states received.

~5! Trent broadcasts ~unjammably! to Alice and Bob
which of the entangled states he sent for all of the bits. Al-
ternatively, we may suppose that the choice of states by
Trent is secret information that the true Alice and Bob are
given. This information is denoted by X.

~6! Alice and Bob sort their released data into four bins
N1 to N4 . In bin N1 , they place the states pertaining to if
Trent sent a uc1& state. In this case they know that their
results should be anticorrelated in the z base and correlated in
the x base. In bin N2 , they place the states pertaining to if
Trent sent a uf2& state. Their results should then be perfectly
correlated when both are measured in the z base and anticor-
related when both are measured in the x base. In bin N3 they
place the results if Trent sent a uC1& state. In this case, if
Bob and Alice measure in different bases, the results are
correlated. Finally, in bin N4 , they place the results if Trent
sent a uF2& state. For this state they know that the bits
should be anticorrelated when Alice and Bob measure in
different bases. All other cases they discard. In Table I we
have summarized the correlation relations for different set-
tings of Alice and Bob polarizers. This departure from cor-
relation to anticorrelation gives Alice and Bob the unique
signature from Trent, which allows them user authentication.

~7! Alice and Bob then check their bits according to the
bins N1 to N4 .

~8! The final step is to distribute the cryptokey K, which is
done using the remaining secret bits from the bins N1 to N4
as before. This is done by first keeping only bits where the
settings of the polarizers were the same. This exchanged in-
formation Y is shown in Fig. 4.

If the data between Alice and Bob and the settings given
from Trent agree, Bob and Alice have again authenticated
each other via Trent. Let us stress the two essential ingredi-
ents for authentication: first, the control of the sign of the
correlation between the bits done by Trent, and second the
fact that Alice and Bob declare their bases and outcome for
the the test bits before Trent tells how the outcomes should
be correlated. Note that, since we do the eavesdropping test
using data from Trent, it is not necessary to use the encoding
procedure in @6#, where a test of the violation of a Bell in-
equality @26# is used to detect the eavesdropper. Consider the
eavesdropper using a Bell analyzer to perform eavesdrop-
ping. If so, in half the cases he will make the right choice; in
the other half he will not. On average, the eavesdropper will
impair a 25% BER, as well as induce the same BER in the
channel. To check the agreement with the data one may sim-
ply check that the BER is not above a critical value. Let us
furthermore stress that, as Trent does not know the outcome
of Alice and Bob’s measurements, he knows neither the au-
thentication string nor the secret key K established by Alice
and Bob.

The data-sorting procedure used in the protocol is similar
to the ‘‘entangled entanglement’’ studied by Krenn and
Zeilinger @25# for three-particle entangled states ~GHZ-states
@29#!, albeit here Trent does classical random selection of the
states. One can also easily construct ~on paper! a three-
particle entangled version of the above protocol, in which the
selection of the state sent by Trent is made purely random,
contingent upon the outcome of the measurement of his par-
ticle from the three-particle entangled states.

B. Two-state entanglement-based QKD with user

authentication „v…

Finally, let us show a simplified version of the four-state
scheme, using only two nonorthogonal states. This scheme is
in some respects, very similar to the two-state scheme Ben-
net 1992 ~B92! @7#. In this case, Trent will again not know
which is the authentication string, nor will he know the se-
cret key bits.

The user authentication and key distribution scheme, as
illustrated with Fig. 4, is as follows:

~1! Trent sends the entangled states uc1& or uC1& , each
with the probability 1

2 ~remember these states are not or-
thogonal!. Alice and Bob do measurements in the polariza-
tion by randomly switching between the z base and the x

base.
~2! Alice tells Bob a set of bits, their position in the trans-

mission, and the settings of the polarizers.
~3! Bob tells Alice a different set of bits, their position in

the transmission, and the settings of the polarizers.
~4! Bob and Alice randomly alternate telling the settings

of the polarizers for all the states received.
~5! Trent broadcasts which of the entangled states he sent

for all of the bits.
~6! Alice and Bob sort their released data into two bins N1

and N2 . In bin N1 , they place the states if Trent sent a uc1&
state. In this case they know that their results should be an-

TABLE I. Correlation of measurement outcomes given that
Trent has sent a certain two-particle entangled state.

Bob
Alice z1 z2 x1 x2

z1 f2 c1 C1 F2

z2 c1 f2 F2 C1

x1 C1 F2 c1 f2

x2 F2 C1 f2 c1
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ticorrelated in the z base and correlated in the x base. In bin
N2 they place the states if Trent sent uC1& state. In this case,
if Bob and Alice measure in incompatible bases, the results
are correlated.

~7! Alice and Bob then check their bits according to the
bins N1 and N2 .

~8! The final step is the distribution of the cryptokey it-
self, which is done using the remaining secret bits from the
bins N1 and N2 as before. This is done by first keeping only
bits where the settings of the polarizers were the same.

If the data between Alice and Bob and the settings given
from Trent agree, Bob and Alice have again authenticated
each other via Trent. If an eavesdropper listens in or is not in
possession of any of the entangled states, he cannot repro-
duce the statistical correlations between the three persons.
Furthermore, an eavesdropper cannot successfully ~using a
Bell-state measurement! distinguish the two states without
ambiguity. If there are losses in the system, he may, how-
ever, succeed in eavesdropping as is the case for two-state
quantum cryptography @7#.

V. DISCUSSION

As for the general applicability of these schemes, they
still assume the existence of an unjammable public channel
at some instance ~one way in some protocols, two ways in
other!. Alternatively, the protocols assume that some initial
piece of secret information is available. Also with Trent this
is inevitable. However, they do allow quantum key distribu-
tion on a jammable public channel between Alice and Bob,

and they do increase the overall security by giving ‘‘an extra
handle’’ in the correlations. We believe that the three main
results–to send authentication information interleaved with
the quantum key, to manipulate the Bell states used for the
key generation, and to use a nonorthogonal state base similar
to what is done in single-photon quantum cryptography—are
all of interest for applications of user authentication in quan-
tum cryptography. Entangled-state manipulation also has use
in quantum secret sharing protocols @27,28#. An interesting
question, that we just commented on briefly, is to what ex-
tent three-particle entangled states can be used for authenti-
cation, similar to the case of secret sharing @27#. As for the
experimental feasibility of the above protocols, they would
all be possible using present-day technology; optical Bell-
state generation has been done by several groups, Bell-state
manipulation has been demonstrated, and on the receiver
side only single-photon detection will be required. Of course,
the feasibility does not imply that the added technical com-
plexity compared to attenuated coherent-state quantum cryp-
tography using unjammable public channels will necessarily
be justified.
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Abstrac t. We present experiments on long wavelength (¶ ˆ 1:55 mm) `plug
and play’ quantum cryptography systems. We discuss the performance of
single-photon detectors at ¶ ˆ 1:55 mm. Furthermore, we address the full
implementation of the quantum cryptography protocol, discussing in detail
the implementation of protocols for error correction and privacy ampli®cation
needed to get a secure key. We illustrate the theory with examples from a full
software simulation to show the performance of the complete protocol in terms
of ®nal secure key creation rate.

1. In tro d u c tio n

T he last decade has seen the birth of quantum information, which combines

quantum mechanics with information technology in novel and fruitful ways. Of

various theoretical proposals and experimental demonstrations , quantum crypto-

graphy for secret key distribution [1] is the most mature and closest to ` real world’

applications . From the initial `proof-of-principle ’ demonstration (in 1989) of

secret-key transmission over 30 cm by researchers at IBM [1], the ®eld has

progressed very rapidly . At L os Alamos National Laboratory secret keys have

been transmitted in optical ®bres over distances of 48 km [2] and up to 1 km in free

space [3]. BT labs have sent cryptographic keys in a ¶ ˆ 1:3=1:5 mm ®eld

wavelength division multiplexing (WDM ) system, sending the key at ¶ ˆ 1:3 mm

and the encrypted data at ¶ ˆ 1:5 mm [4]. T he University of Geneva has demon-

strated a very stable `plug and play’ interferometric system on 23 km installed

telecom ®bre, see [5] and the improved automated system in [6]. T he main

obstacle today is noise in the avalanche photodiode s (APDs) used as single-photon

detectors. At an optical wavelength of 0.85 mm silicon APDs have a very good

performance, but the losses in the optical ®bre limits the transmission distance to a

few kilometres. At 1. 3 mm, both germanium and InGaAs/InP APDs have been

extensively studied [7, 8]. Finally , at 1.55 mm, where the optical ®bre losses are the

lowest, several groupsÐamong others the European ESPRIT project EQCS POT

(University of Geneva, DERA, Oxford, Innsbruck, Elsag Bailey), T elenor
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(Norwegian PT T ), University of AÊ rhus, and our group at KT H, S tockholm [9,

10]Ðare now studying quantum cryptography systems using indium gallium

arsenide (InGaAs) APDs as single-photon counters.

In this paper, we will discuss our experimental work at KT H on the realization

of a long wavelength (¶ ˆ 1:55 mm ) `plug and play’ quantum cryptography system

as well as discuss the implementation of the protocols needed for the extraction of a

®nal secure key. T he paper is organized as follows: in section 2, we describe the

`plug and play’ system, the performance of single-photon counting APDs and the

system’s results on quantum bit error rate. In section 3 we discuss in detail the

classical communication protocols needed to supplement the quantum parts of the

protocol, and describe software simulations of the complete protocol. Finally in

section 4 we combine the results of sections 2 and 3 to predict what would be the

®nal performance for the bit rate of the secure key.

2. Exp e r im e n ta l l on g w av e le n g th q u a n tu m c ry p to gr ap h y

2.1. A systems example

Let us now describe our implementation [9, 10] of a ¶ ˆ 1:55 mm `plug-and-

play’ interferometric scheme for quantum cryptography [5], see ®gure 1. Our

present system uses phase encoding of the B92 protocol [11], based on two non-

orthogonal states. T he Geneva group has also at ¶ ˆ 1:3 mm implemented the 4-

state BB84 protocol featuring improved security compared to the two-state

protocol [6]. Phase encoding is often preferred over polarization encoding, because

the interferometric phase of a photon is better preserved than the polarization in

telecom ®bres. T he birefringence of ®bres and the e�ect of the environment make

polarization ¯uctuate more randomly.

T he principle is to get interference at Bob between two weak pulses. Bob and

Alice can change the phase of these pulses. I f this interference is constructive,

there is a click in the receiving photodetector ; thus A lice’s and Bob’s independent
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Figure 1. `Plug and play’ system (originally demonstrated by University Geneva in [5])
at the Department of Electronics, KT H, using phase encoding in the B92 scheme.
T he laser pulse from Bob is split into two pulses, one comes back from Alice
modulated, and the other one is re¯ected at Bob and also modulated. Both pulses
will interfere at Bob and can carry information about a digital 1 or a 0 in either one
of the bases, by Alice’s choice of modulation.



choices of the phase can carry information from A lice to Bob. T hese weak pulses

typically will have an intensity of · ˆ 0:1 photons per transmission, as the

probabilit y that two or more photons are sent will then be given approximately

by ·2=2 (a laser exhibits a Poissonian distribution of the photons). With more than

one photon per pulse, one can eavesdrop more easily [12, 13].

In ®gure 1, we show the implemented `plug and play’ quantum cryptography

system set-up. By using Faraday mirrors, any birefringence in the interferometer

is compensated and no alignment is needed. T hese main steps can describe the

procedure of the encoding and transmission of the raw bits.

. Bob sends a pulse from the laser.

. At C1 (®bre coupler), the pulse is split into two pulses P1 and P2. T he P1

pulse goes directly onto the ®bre, while P2 goes ®rst through Faraday

mirrors FM1±FM2 and then into the ®bre.

. When part of the P1 pulse (split in C2) reaches detector DA (PIN ), the

detector triggers Alice’s phase modulator PMA , which encodes a phase to the

P2 pulse.

. Both pulses are re¯ected at Faraday mirror FM3, and attenuated by

attenuator A to the single photon level.

. When the pulses again reach C1, one part of the P1 pulse goes via FM2 Bob’s

phase modulator PMB , where it acquires a phase shift.

. T he P2 pulse, with a phase shift from Alice, interferes at the coupler C1 with

the P1 pulse, with a phase shif t of Bob.

. T he interference will be constructive and destructive if the phase di� erence

is 0 or º respectively .

. T he cases of constructive interference causing also a count in Bob’s detector

are kept as valid data bits.

2.2. Detector performance

T he single-photon detector used in the present work is a liquid nitrogen cooled

indium gallium arsenide (InGaAs) APD operated in a gated mode, lif ting the bias

voltage above breakdown a few nanoseconds, when we expect a signal to arrive. In

the `plug and play’ system this information is readily available since Bob both

sends and receives the pulses. A passive quenching circuit with a 320 kW series

resistance providing the DC bias was used. T he gate voltage was added on top of

the bias, and the signal was measured over a 50 W load resistance. Our best

performance so far has been obtained with an InGaAs APD C306444EJT -07

manufactured by EG&G. However, other work [14], indicates that selected APDs

from other manufactures also may give a similar performance. T he APD was put

in a Dewar together with a thermoheater on the circuit board, which we use to

regulate the temperature to ®nd an optimum operating range. In ®gure 2 we show

the quantum e�ciency ² of the APD, and in ®gure 3, the noise-equivalent power

(NEP ˆ h¸ … 2R †
1=2

=²), where h¸ is the photon energy and R the dark count rate

(counts s
¡ 1) as a function of temperature respectively . As seen from ®gure 3, a good

operating temperature is found around ¡ 608C. At this temperature, we operate the

APD with an excess bias voltage of 3.5 V (from 0.5 V below the breakdown voltage

of 41.5 V). T his gives a quantum e�ciency of 18%at 210 K and using a gate width

of 5 ns, we obtain a dark count probabilit y per pulse of Pd ˆ 2 £ 10
¡ 4 in the
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Figure 2. Quantum e�ciency of the avalanche photodiode as a function of temperature.
An excess voltage of 3.5 V above breakdown is used in the gating.

Figure 3. Noise-equivalent power (NEP), as a function of temperature for the InGaAs
APD. An excess voltage of 3.5 V above breakdown is used in the gating.



counter. T his is slightly higher compared to the results for selected Fujitsu APDs

reported in [14], but our results for the quantum e�ciency are higher .

2.3. S ystems results

For a quantum cryptography system where the security is based on the ability

of detecting an eavesdropper (Eve), one of the most critical parameters is the

system noise. T his is because we tactically have to assume that all errors are due to

Eve, so that for the impaired quantum bit error rate (QBER) she has obtained

maximum information. As will be shown below, the larger the systems noise, the

more the key must be compressed in order to reach the ®nal secure key of which

Eve has arbitrarily low information. As also will be shown, beyond a certain error

rate, it is not possible to obtain a fully secure key.

T he collected rate of all errors e is called the quantum bit error rate. T he name

quantum bit error rate, instead of simply error rate, is chosen because it is only the

error rate before error correction is applied . I f ² is the detector quantum e�ciency,

· the average number of photons per pulse, ¬ the channel (®bre) attenuation

coe�cient in dB km
¡ 1 , and L the transmission length in km, then the raw bit rate

R r for Bob is

Rr ˆ ²·10
¡ ¬L =10

R0 ; … 1†

where R0 is the source bit rate on Alice’s side. Note that in the `plug-and-play’

system, the signal is attenuated to the single-photon level (average photon per

pulse ·) only after Alice has phase modulated the pulse.

However, the key distribution is limited not so much to the bit rate itself , but

rather to the error rate, QBER, for which an upper bound exists above which not

all errors can be corrected without decreasing the ®nal bit rate to zero. Assuming

quite realistically a non-perfect classical visibili ty V c in the photon interference,

the QBER is given by [10]

QBER ˆ e ˆ

… 1 ¡ V c † 10
¡ ¬L =10²·=2 ‡ Pd

2Pd ‡ 10¡ ¬L =10²·
; … 2†

where ¬ is the ®bre loss in dB km
¡ 1 and L is the transmission distance in km ; the

other parameters were de®ned above. T his result follows simply by applying

Bayes’ rule for the computation of the probabiliti es in terms of transmission rates.

In the systems experiment, a ¶ ˆ 1:55 mm distributed feedback (DFB) laser was

directly modulated to produce a 2 ns pulse with a repetition rate of B ˆ 1 kHz. T he

pulses are sent from Bob along a spooled ®bre before reaching the side of Alice

where the pulses are attenuated to an average of · ˆ 0:1 photon per pulse. In a

separate measurement, using strong signals (· ¾ 1), the classical fringe visibili ties

of 98, 96 and 90%were obtained for a propagation of 10, 30 and 40 km of spooled

®bre, respectively. T o experimentally infer what would be the total system QBER,

i.e. the error rate before error correction, we measure in the single-photon regime

the counts per second for constructive, Imax , and destructive interference, Imin .

From Bayes’ rule we obtain QBERs of e ˆ Imin=… Imax ‡ Imin † of 3%, 6%and 9%for

a propagation distance of 10, 30 and 40 km respectively . T his is below both the

11.5%limit and the 15%limit (the di�erent limits are due to di�erent assumptions

on the eavesdropper’s abilitie s), above which error correction and privacy ampli-

®cation cannot be used easily [12, 13], see also below.
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From the experimental results, and a theoretical expression for the QBER [10],

we may extrapolate to ®nd the longest transmission distance possible . In ®gure 3,

we plot the QBER as a function of transmission distance, inserting also our

experimental results. From this ®gure we see that using the present experimental

parameters a 60 km transmission of a secure key would be feasible . Considering the

quite large classical visibili ties we already have, further improvements in visibili ty

do not improve the transmission distance very much. T he key parameter is rather

the reduction of the dark counts (while keeping the quantum e�ciency high

enough). Assuming 0.2 dB km
¡ 1 losses, a ten-fold decrease in dark count rate (for

constant quantum e�ciency) translates into a 50 km increase in transmission

distance. T o decrease the dark counts one may use shorter gate widths, for

instance by having an actively quenched APD, or use a time-to-amplitude

converter. In curve (b) (®gure 4) we show the predicted result for 99.5% classical

visibil ity and a ten- fold decrease in dark count rate (but the same quantum

e�ciency), allowing for more than 100 km secure key distribution.

In the present experimental data we opted for a very low source rate of 1 kHz.

T his, however, is neither any fundamental nor any practical limit of the APD

detector or the `plug and play’ system itself . Primarily two e�ects will limit the

source rate. First, for the `plug and play’ system, as discussed in [6], one must

avoid having too many pulses circulating in the transmission line. A second

concern is the APD itself , in that after-pulsing due to trapped carriers may

increase the dark counts if the gate pulses are too close in time [14]. S till, a

100 kHz to a 1 Mbit s
¡ 1 source rate system should be feasible and, as will be seen

below, will be needed to realize a ®nal key creation rate in the kbit s
¡ 1 regime.
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Figure 4. (a) QBER as a function of transmission distance. T he marks with error bars
are experimentally obtained results for 10, 20, 40 km transmission on spooled ®bre.
T he dark count probability is 2 £ 10

¡ 4 , the average photon number per pulse is 0.1 ,
the quantum e�ciency is 18%, the ®bre loss is 0.2 dB km

¡ 1 and the visibility is 98%.
(b) QBER for a dark count probability 2 £ 10

¡ 5 and a visibility of 99.5% is plotted.



3. Se c r e t ke y e xtrac tio n fro m ra w d a ta tra n s m i s s io n

When Bob has received and decoded the transmitted information he will end

up with a number of raw bits. Depending on the chosen coding scheme, a constant

factor (on average ) of bits will be lost at the demodulation , typically half of the bits.

T he remaining, so-called sifted bits will still contain errors that have to be

corrected. T here exists a minimum amount of bits that have to be sacri®ced in

order to accomplish error correction. Also, the corrected key is not perfectly secure

and has to be compressed by privacy ampli®cation to gain security. When the key

is compressed, an additional number of bits need to be discarded. All these steps

entail a reduction of the number of raw bits for the key extraction protocol.

3.1. Information ¯ow

By key agreement we refer to the procedures by which a perfectly secret key is

agreed upon between two parties. A key is perfectly secret if any eavesdropper has

no other strategy than a random guess for each bit in the key. A block-diagram of a

complete protocol for key distribution in quantum cryptography is shown in

®gure 5. T he raw key (before sif ting) is made up of bits obtained by Bob after

demodulation of incoming photons . T wo channels are needed in order to make a

key agreement protocol complete.
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Figure 5. Diagram of the basic ¯ow in the information process for quantum
cryptography. T wo channels: the private quantum channel and the public channel
are shown. Several steps like sif ting, error correction and privacy ampli®cation are
needed to distribute a ®nal secure key between Alice and Bob.



. For transmission of the photons we have the private quantum channel

(PQC ), i.e. the optical ®bre. T his channel has no authenticity and imperfect

privacy.

. Alice and Bob use the public channel (PC) to exchange classical information

as part of the key agreement. T his channel is assumed to have perfect

authenticity, but no privacy . T his means that Eve can only listen to the

channel, but not change the information sent by it. T he public channel

transmits information with perfect ®delity.

T he assumption that public messages cannot be corrupted by Eve is an important

(and very reasonable) restriction, because otherwise it is clear that Eve could sit in

between Alice and Bob and impersonate each of them to the other. I f message

authenticity cannot be enforced by the physical properties of the channel, it can be

provided by a secure classical authentication scheme [15].

In order to control the experimental system set-up, as well as being able to

simulate the quantum cryptography system, we need computer protocols . We have

recently built up a software system to simulate all stepsÐfrom the sending of the

random bit string over the ®bre to the sifting, error correction, and privacy

ampli®cationÐall according to the quantum cryptography scheme described

earlier [16]. New results using this tool will be given below. We have two di� erent

kinds of software that communicate with each other and the experimental set-up.

T he ®rst one has been fully implemented and, at the time of submission of the

paper (March 1999), the second part was under implementation .

T he purpose of the ®rst sof tware part (protocol software) is principally to make

up a window user interface for both Alice and Bob were all necessary system

parameters are set and the resulting key is presented. In the background , the

program should utilize the protocols of reconciliation (error correction) and

privacy ampli®cation to extract the ®nal secretly shared key. T he code is written

in Matlab, allowing easy simulations .

T he objective for the second sof tware part (controlling software) is to control

the hardware of the experimental set-up ; i.e. this part supplies the raw key for

further processing in the protocol-software part. T he program is written in

L abVIEW. Note that in this ®rst system we only use one computer hosting

both Alice and Bob, but no communication between Alice’s and Bob’s software are

allowed outside the strict rules of the protocol .

3.2. S if ting

As mentioned, according to the speci®c protocol , e.g. BB84 and B92, Bob and

Alice will agree to use only the information sent together with those photons Bob

measured in the correct basis. T his selection is made by comparing the bases of

Alice and Bob. T his part of the protocol is called sif ting and produces a sif ted key

out of the raw key. Due to the eventual presence of an eavesdropper and due to

transmission and detection limitations , errors are introduced and have to be

corrected by the protocol.

3.3. Reconciliation

Reconciliation is the process of correcting errors between Alice and Bob’s

version of the sif ted key. T here are several, more or less successful, methods to

accomplish error correction e�ciently. In classical noisy communication , there are
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very well known error-correction codes that use redundancy in the signal to

transmit error- free information. Perhaps the reason why classical coding does

not seem so popular in quantum cryptography is that in some way the code words

must be known to both sender and receiver, e.g. decided before transmission. Alice

and Bob then have to share some initial information. Another problem is that a

large fraction of bits is thrown away in the sifting part. T his fraction (50%) is so

large that other error-correction schemes become more e�cient. In other cases

coding can be implemented to work very e�ciently.

During reconciliation , information is exchanged over the insecure public

channel. We want to minimize the information that the eavesdropper Eve gains ,

and at the same time e�ciently correct all errors in Bob’s key, losing as small a

f raction of bits as possible.

Unconditionally there is a minimum amount of information that has to be

exchanged between Alice and Bob in order to correct all of Bob’s bits. Either this

information may be in the form of bits leaked to Eve, or by bits Alice and Bob have

to agree to lose in the form of introduced redundancy or by discarded bits. We can

calculate for this bound in information for a binary symmetric channel (BSC) like

the private quantum channel (PQC ). First, we review some information-theor-

etical de®nitions .

I f Alice and Bob share ns bits before reconciliation , this corresponds to

knowledge of ns bits of Shannon information. Let sender Alice’s entropy of the

whole string be denoted H … A † , where A ˆ X
n is the string of bits sent by her, and

where X is the random process de®ning either 1 or 0. T he entropy of a discrete

random variable X is de®ned by

H … X † ˆ ¡
X

K

iˆ 1

p i log2 pi ; … 3†

where K is the length of the alphabet and p i the probabilit y of each symbol. For

the binary case when p i ˆ 1=2 and K ˆ 2 we have H … X † ˆ 1 and H … A † ˆ ns .

Let S denote the knowledge picked up by any receiver (or observer) of the

signal on the PQC. Hence, on the receiver’ s side (or somewhere along the channel)
the observed normalized amount of entropy on Alice’s sent signal given S , will be

H … X j S † . I f we introduce the probability of an error e on the channel, this

conditional entropy follows from the result from a binary symmetric channel

and can be written as

H … X Sj † ˆ h… e† ˆ ¡ e log2 e ¡ … 1 ¡ e† log2 … 1 ¡ e† : … 4†

T hus, given the observed knowledge S we can ®nd the mutual information

I … X ; S † . T his is the amount of information provided by S about variable X , i.e.

the received information corresponding to the bits sent by Alice. Let us introduce

the notation IXY ˆ I … X ; S ˆ Y † , where Y is the random variable of Bob. From

the de®nition of Shannon information we then have

IXY ˆ I … X ; Y † ˆ H … X † ¡ H … X S ˆ Yj † ˆ 1 ‡ e log2 e ‡ … 1 ¡ e† log2 … 1 ¡ e† : … 5†

T his is the normalized mutual S hannon information between Alice and the

observer (preferably Bob) on the sifted key before error correction having an

error rate e. S imilarly , if S ˆ B , where B ˆ Y
n is Bob’s received bit sequence,

then we have the shared absolute information between Alice and Bob,
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IA B ˆ nsI … A ; S ˆ B † . In the same way, if S ˆ E represents the total knowledge

picked up by Eve after eavesdropping (received bit string E ˆ Z
n) we have

IE ˆ nsI … A ; S ˆ E † . Eve’s normalized information is denoted IZ , where Z is

Eve’s random variable . T he minimum number of exchanged (lost) bits then

simply becomes [16]

nmin ˆ ns … 1 ¡ IXY † ˆ ns … ¡ e log2 e ¡ … 1 ¡ e† log2 … 1 ¡ e† † : … 6†

In the following discussion, we refer to this limit as the Shannon limit. T he

objective now for di�erent error-correction methods is to perform as close as

possible to this limit. Generally more than nmin bits are lost during reconciliation .

T he methods used for error correction in quantum cryptography [17±19] are all

variation s of a simple error correction method where one compares the parity

(XOR) of a subset of both versions of the bit sequence. I f the parities are not

matching then you know an error occurred, and you proceed with a binary search

on that subset with subsequent parity checks to ®nd the error. Recently, in a MS c

thesis project [16] we studied in detail a slightly improved version called `cascade’ ,

®rst presented by Brassard and Salvai l in [17]. T he cascade method is designed for

practical implementations and is not fully optimal. Yet, the capacity is very close to

that of noisy channel coding, i.e. the bit loss is close to the value of nmin .

T he basic idea for cascade is to remember the error location for each error

found in one pass, and use this when going back in all previous passes to correct

even one more error (®gure 6). For every error found a new error will be found and

corrected. First we de®ne a pass as the starting point of a new iteration that will
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Figure 6. T he cascade error correction by binary search and parity disclosure on a
chosen sub-block of the key. Error d is the only one found and corrected by Binary

(a binary search algorithm) in Pass 1. A random permutation of the key is then
carried out, prior to entering Pass 2. In this stage two errors, b and g are found, but
now looking for these corrected errors and their positions in the stage of Pass 1, we
®nd two more errors, bit a and bit f to correct. We can run Binary on the ®rst and
the last block in the ®nal stage to correct the last two errors, e and c.



randomly divide the key in a new set of blocks for further error search. Cascade

works in several passes. So, in every pass, each time an error is found in a block, its

corresponding error position will also be found in a block of a previous pass. T his

block was previously left (af ter binary search) with an even number of errors. Now

as the actual error is corrected, this block has an odd number of errors. T he binary

search is applied on that block again, and one error in the other block can be

corrected in the same way. T his process is continued until no more errors are

found for the pass. In this way pairs of errors are corrected and we can achieve a

low bit loss close to the minimum required [16, 17].

3.4. Estimating Eve’s information

Eve has several possible strategies at her disposal for eavesdropping, such as

intercept/resent, beamsplit and quantum non-demolition (QND ) attacks. Our

objective is to get an upper bound on the expected average amount of information

that Eve is in possession of after error- correction. T he fraction IZ is a function of

the error rate introduced by Eve. In addition to the following text we refer the

reader to [12, 13, 20±22] for more rigorous derivations of the bounds on IZ as a

function of the quantum bit error rate e.

Eve picks up information on both communication channelsÐin the quantum

channel by eavesdropping the photons , and in the public channel by listening to

the exchanged parity bitsÐand uses them to correct her version of the key.

It is hard to exactly estimate the knowledge that Eve might have harvested.

However, we can calculate upper bounds on IZ . We will consider two di� erent

simple approaches of eavesdropping , namely, intercept/resent and beamsplit. By

straightforward calculations on the amount of normalized information IZ leaked to

Eve when she applies these methods, we arrive at the formula

IZ · ‡ 4e=21=2
‡ 5‰ … ·… 1 ¡ ·† ‡ … 4 ‡ 2… 21=2

† † e† =nŠ
1=2

; … 7†

where · is the intensity of the photons . T his expression was derived by Bennett

et al. [1] in 1992.

However, more recently there have been estimations on IZ performed more

rigorously, with consideration of the many more possible ways of attack (but still

restricted to the individual attacks like intercept/resent and beamsplit). For more

details see a paper by L uÈ tkenhaus [13]. T he fraction of bits learned by Eve with

this stringent estimation is

IZ

log2 … 1 ‡ 4e ¡ 4e2 † ; for e 4 1=2 ;

1 ; for 1=2 4 e:

8

<

:

… 8†

Figure 7 shows a simulation of Eve’s collected information using both these

estimates together with the reconciliation-method cascade. As mentioned, the

simulation is made by Alice generating a random bit string (here 4000 bits), which

Bob receives with a given bit rate e. T he complete reconciliation protocol is then

followed by the sof tware. Alice’s and Bob’s shared information IXY is plotted as

well as Eve’s IZ . In order to extract a ®nal key with length 5 0 we have for the

early estimate [1] a theoretical maximum allowed error rate of 15% (®gure 7). For

the stringent estimate [13] the bound is 11.5% (these limits apply both for error
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correction at the Shannon limit, nmin ). T hese plots (using our software simulation)
verify the theoretical results obtained [17±19].

When studying ®gure 7 it is easy to realize that if IZ becomes larger than IXY

further processing (privacy ampli®cation, to be discussed below) cannot be used to

decrease Eve’s information on the key while still leaving bits for Alice and Bob to

use as a key.

3.5. Privacy ampli®cation

We now turn our interest to the next step, the privacy ampli®cation, which is a

technique to reduce Eve’ s information on the key to an arbitrarily low amount by

compressing the key. Privacy ampli®cation uses so-called universal hash functions ,

®rst introduced by Carter and Wegman (1979 ). Privacy ampli®cation by public

discussion was ®rst introduced by Bennett and co-workers [18, 19], see also [23].

Suppose Alice and Bob share a ne-bit long string A and B after error correction,

while the eavesdropper learns at most t < ne bits of information (Eve’s string is E).
Note that we expect t < nsIZ . Alice and Bob now agree on a publicly chosen

random compression function f , which Eve also knows. T hey calculate f … A †

respective of f … B † (note that A ˆ B ), and then take K ˆ f … A ˆ B † to be their

new, now n f -bit long (nf < ne), shared key after the privacy ampli®cation. T he

basic idea of privacy ampli®cation is to choose f f rom a set of hash functions , which

randomly redistributes the bits. For a hash function the output bits are a chaotic
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Figure 7. Cascade protocol simulation using the tool developed in [16]. T he solid line
shows Alice’s and Bob’s mutual information ; it is constant because errors are
corrected. Eve’s knowledge is consequently increasing with respect to the error rate.
At some point the curves meet, and there’s no secret information that can be
extracted from their key. T wo limits, elim , are achieved, one for each estimate of
Eve’s information.



permutation of input bits, that is, a small input change will provide a large output

change. Hence, if Eve knows the whole key except one bit, then the output will

look completely random compared to the output where the input bits are the

correct key. In other words, even if Eve knows f … E† , she will be left with an

arbitrarily small knowledge of the ®nal key K ˆ f … A ˆ B † . T he amount of com-

pression nf =ne depends on the amount of ®nal security sought. T he most important

result f rom the theory of privacy ampli®cation is that this ®nal security level will

depend only on the chosen value of an extra compression parameter s, called the

security parameter, according to the formula [18]

IE

2¡ s

ln 2
; … 9†

where IE is Eve’s ®nal information. T o reach the level of security where Eve knows

at most one bit of the ®nal key, the reconciled key has to be compressed only by the

amount of information estimated to be in Eve’s possession af ter reconciliation, i.e.

s ˆ 0. T o reach a higher grade of security we have to choose s > 0. An arbitrary

level of security can be reached by choosing s large enough. T his will though

provide a larger and less desired compression, i.e. a smaller ®nal key. All this, of

course, can be put in a rigorous mathematical basis, see [18, 19, 23].

Let us now estimate the fraction of bits lost in privacy ampli®cation. For a

given security parameter s, we are interested in the normalized transmission rate,

R ef f , telling us how e�ective our protocol is in keeping bits from the initially

received raw bits. For the method of discarding errors, the discard method, the

e�ective bit rate is given by

R
discard
ef f

ˆ … 1 ¡ rs† … IXY ‡ h… e† ¡ r
discard
ec

¡ r
discard
pa

… 1 ¡ r
discard
ec

† † ; … 10 a†

and for the method of correcting errors, the cascade method

R
cascade
ef f ˆ … 1 ¡ rs† … IXY ‡ h… e† ¡ r

cascade
ec

¡ r
cascade
pa † ; … 10 b†

rs is the fraction of bits abandoned in the sifting step

rs ˆ
1
2 ; … 11 †

rdiscard
ec is the f raction of bits lost in the error correction step [22],

r
discard
ec

ˆ
7
2 e ¡ e log2 e; … 12 a†

at Shannon limit rdiscard
ec is expressed as

r
discard
ec

ˆ h… e† ; … 12 b†

for the cascade method all errors are corrected and therefore

r
cascade
ec

ˆ 0: … 12 c†

h… e† and IXY are given by equations (4) and (5) respectively. ri
pa

(i ˆ discard, cascade) is the f raction of the key to be compressed in the privacy

ampli®cation step. Note that for s > 0, we lose a fraction ri
pa

ˆ … t ‡ s† =ne of bits in

this step, which for s ˆ 0 from the theory becomes [13], or according to equation

(8)

r
discard
pa

ˆ log2 … 1 ‡ 4e ¡ 4e
2

† ; for e < 1=2 ; … 13 a†

for the cascade method is given by [16, 17]
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r
cascade
pa

ˆ log2 … 1 ‡ 4e ¡ 4e
2

† ‡ 2 ‡
1 ¡ … 1 ¡ 2e†

0:73

2
log2

0:73

e

¡ ¢

‡ 0:73 ¡
1 ¡ … 1 ¡ 2e†

0:73=e

2… † log
0:73

e

¡ ¢

X

w

lˆ 2

2
1¡ l

; for e < 1=2 ; … 13 b†

and at the Shannon limit rcascade
pa is expressed as

r
cascade
pa

ˆ log2 … 1 ‡ 4e ¡ 4e
2

† ‡ h… e† ; for e < 1=2: … 13 c†

In ®gure 8 the results are shown from our simulation tool developed in [16] of

the complete key agreement protocol using as a hash function a simple XOR

multiplication of the key with a random binary matrix of size ne £ nf (ne and n f is

before and af ter privacy ampli®cation, respectively). T his is an example of the class

H3 universal linear hash functions [17] that requires ne £ n f size matrices of

random 1: s and 0: s. T here are several classes of hash functions to use. Universal

hash functions, in general, require ne £ 2nf size matrices. Of course computations

are made faster with the use of smaller matrices, and there are other classes of hash

functions to accomplish this, but the class of linear functions used here are easy to

implement. As seen from ®gure 8, the cascade method performs very close to the

theoretical S hannon limit for error correction. Note, however, that a minimum

fraction rpa of bits are lost in the privacy ampli®cation step. T he larger the error

rate, the more bits will be lost in the privacy ampli®cation step, and for large error

rates, this is a major reduction in e�ective transmission rate R ef f . From ®gure 8 we
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Figure 8. Using the stringent estimate of t, simulations using the software of [16], of
the fractions of bits remaining after error correction and privacy ampli®cation gives
e�ective bit rates for discard and cascade protocol. As seen the cascade method
works very close to the result for error correction at the theoretical Shannon limit.



also observe that it is essential to keep the system’s bit error rate low, otherwise the

transmission rate drops drastically.

4. Pu ttin g i t a l l tog e th e r

Let us now ®nally combine the experimental results of the quantum transmis-

sion with the simulation results f rom the software system. At the time of writing of

the paper (March 1999), these results were separate, but we are currently working

towards a systems demonstrator where the sof tware will be using the real data from

the transmission. Critical parameters for a quantum cryptography system will be

the ®nal key rate R f given a security parameter, and the transmission distance L . A

natural benchmark (similar to that used in conventional ®bre optics) would be the

capac ity C ˆ R f L (measured in bit s
¡ 1

£ km ). However, the capacity will depend

both on transmission distance and the key extraction protocol and will for instance,

be a nonlinear function of the transmission distance.

T he ®nal key rate R f can be obtained from the raw rate R r (equation (1)), and

the normalized e�ective rate Ref f (equations (10 a ) and (10 b ))

R f ˆ R rR ef f ˆ ²·10
¡ ¬L =10

R0Ref f : … 14 †

T he ®nal key rate decreases due to sif ting, error correction and privacy ampli®ca-

tion.
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Figure 9. T he predicted ®nal key generation rate R f f rom equation (14) for our system
parameters as a function of the transmission distance L . T he marks with error bars
are experimentally obtained results presented in ®gure 4. Both the results for a raw
source rate of R 0 ˆ 1 kbit s

¡ 1 and dark counts probability 2 £ 10
¡ 4 , and for

R0 ˆ 1 Mbit s
¡ 1 dark count probability per pulse of 2 £ 10

¡ 5 are shown.



In ®gure 9 we plot the predicted ®nal rate R f for our system parameters as a

function of the transmission distance L . As mentioned, the cascade method

performs very close to the Shannon limit of error correction, so we only show

the latter in the graph. Note that, even for L ˆ 0 and before error correction, the

®nal key rate drops from the source rate by a factor 2=… ²·† (about a factor 110 for

our system ). In ®gure 9 we show the results both for R0 ˆ 1 kbit s
¡ 1 and dark

counts probability 2 £ 10
¡ 4 , for R0 ˆ 1 Mbit s

¡ 1 dark count probabilit y 2 £ 10
¡ 5 .

Clearly, a high bit-rate system is highly desirable. What should be stressed also is

that this chart alone should not be used for the optimization of the system. For

instance, it could be desirable to operate the system at a slightly higher quantum

e�ciency, and therefore higher error rate, say 5% instead of 1%[24]. What is then

lost in the key extraction part, can be regained in the increased raw transmission

rate. We believe these issues deserve further discussion.

5. Co n c lu s io n s

In conclusion , we have demonstrated the feasibility of quantum cryptographic

systems operating at 1550 nm. Some key results are that InGaAs APD can have

su�cient performance to systems, albeit so far our 1550 nm system does not have

the same performance as a 1300 nm system. An improvement in detector perform-

ance would be highly desirable, and seems reachable . Improving detection

electronics, increasing the key rate, and using Peltier cooling of the detector

could lead to practical a quantum cryptographic system at 1550 nm for telecom

applications capable of 100 km transmission. We have also discussed in detail the

key extraction protocol , and in the ®nal section made predictions of the perform-

ance of a complete long wavelength quantum cryptography system.
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Life only demands from you the strength you possess.

Only one feat is possible - not to have run away.

Dag Hammarskjöld


